Evaluating the alignment of AI with human emotions

J. Derek Lomas , Willem van der Maden , Sohhom Bandyopadhyay , Giovanni Lion , Nirmal Patel , Gyanesh Jain , Yanna Litowsky , Haian Xue , Pieter Desmet
{"title":"Evaluating the alignment of AI with human emotions","authors":"J. Derek Lomas ,&nbsp;Willem van der Maden ,&nbsp;Sohhom Bandyopadhyay ,&nbsp;Giovanni Lion ,&nbsp;Nirmal Patel ,&nbsp;Gyanesh Jain ,&nbsp;Yanna Litowsky ,&nbsp;Haian Xue ,&nbsp;Pieter Desmet","doi":"10.1016/j.ijadr.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Generative AI systems are increasingly capable of expressing emotions through text, imagery, voice, and video. Effective emotional expression is particularly relevant for AI systems designed to provide care, support mental health, or promote wellbeing through emotional interactions. This research aims to enhance understanding of the alignment between AI-expressed emotions and human perception. How can we assess whether an AI system successfully conveys a specific emotion? To address this question, we designed a method to measure the alignment between emotions expressed by generative AI and human perceptions.</div><div>Three generative image models—DALL-E 2, DALL-E 3, and Stable Diffusion v1—were used to generate 240 images expressing five positive and five negative emotions in both humans and robots. Twenty-four participants recruited via Prolific rated the alignment of AI-generated emotional expressions with a string of text (e.g., “A robot expressing the emotion of amusement”).</div><div>Our results suggest that generative AI models can produce emotional expressions that align well with human emotions; however, the degree of alignment varies significantly depending on the AI model and the specific emotion expressed. We analyze these variations to identify areas for future improvement. The paper concludes with a discussion of the implications of our findings on the design of emotionally expressive AI systems.</div></div>","PeriodicalId":100031,"journal":{"name":"Advanced Design Research","volume":"2 2","pages":"Pages 88-97"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Design Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949782524000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative AI systems are increasingly capable of expressing emotions through text, imagery, voice, and video. Effective emotional expression is particularly relevant for AI systems designed to provide care, support mental health, or promote wellbeing through emotional interactions. This research aims to enhance understanding of the alignment between AI-expressed emotions and human perception. How can we assess whether an AI system successfully conveys a specific emotion? To address this question, we designed a method to measure the alignment between emotions expressed by generative AI and human perceptions.
Three generative image models—DALL-E 2, DALL-E 3, and Stable Diffusion v1—were used to generate 240 images expressing five positive and five negative emotions in both humans and robots. Twenty-four participants recruited via Prolific rated the alignment of AI-generated emotional expressions with a string of text (e.g., “A robot expressing the emotion of amusement”).
Our results suggest that generative AI models can produce emotional expressions that align well with human emotions; however, the degree of alignment varies significantly depending on the AI model and the specific emotion expressed. We analyze these variations to identify areas for future improvement. The paper concludes with a discussion of the implications of our findings on the design of emotionally expressive AI systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the alignment of AI with human emotions A multi-criteria fusion-based pose estimation method for civil aircraft maintenance operation tasks Exploring opportunities for online pharmacy design for Moroccan citizens Design interventions for sustainable eating: Case studies across UK and China Withdrawal notice to: The five-factor model, social network, and social influence in instant messaging groups [Adv. Des. Res. 2 (2024) 14–25]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1