Shihao Fu , Pingmei Li , Shiyu Yu , Yang Hu , Yibo Liu , Daming Chen , Yaqing Wei , Yuanxun Li , Yong Chen
{"title":"The effect of Ga doping on the microstructure and electrochemical properties of Li7La3Zr2O12 garnet-type solid electrolyte","authors":"Shihao Fu , Pingmei Li , Shiyu Yu , Yang Hu , Yibo Liu , Daming Chen , Yaqing Wei , Yuanxun Li , Yong Chen","doi":"10.1016/j.ssi.2024.116765","DOIUrl":null,"url":null,"abstract":"<div><div>The garnet-type Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) has garnered significant attention due to its superior thermal stability and broad electrochemical window. However, LLZO exhibits instability at room temperature and readily transforms from a cubic phase (<em>c</em>-LLZO) to a tetragonal phase (<em>t</em>-LLZO), resulting in issues such as low ionic conductivity. Herein, the effect of Ga doping on LLZO is investigated. Combined with SEM, activation energy, ionic conductivity and XRD refinement, the results demonstrate that Li<sub>7-3x</sub>Ga<sub>x</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> exhibits better properties when x = 0.25. Solid-state nuclear magnetic resonance (SSNMR) showed that Ga0.25-LLZO was favorable for promoting Li<sup>+</sup> transport. Moreover, Li|[email protected]|Li symmetric cells exhibit lower interfacial specific impedance (IASR) and higher critical current density (CCD) than both Li|Ag@Ga0-LLZO|Li and Li|[email protected]|Li and was stabilized at 0.15 mA/cm<sup>2</sup> for 1300 h of stable cycling. In addition, the all-solid-state battery Li|[email protected]|LFP was cycled at 0.2C for 100 cycles with 82 % capacity retention, demonstrating its promising application in lithium batteries.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"420 ","pages":"Article 116765"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824003138","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The garnet-type Li7La3Zr2O12 (LLZO) has garnered significant attention due to its superior thermal stability and broad electrochemical window. However, LLZO exhibits instability at room temperature and readily transforms from a cubic phase (c-LLZO) to a tetragonal phase (t-LLZO), resulting in issues such as low ionic conductivity. Herein, the effect of Ga doping on LLZO is investigated. Combined with SEM, activation energy, ionic conductivity and XRD refinement, the results demonstrate that Li7-3xGaxLa3Zr2O12 exhibits better properties when x = 0.25. Solid-state nuclear magnetic resonance (SSNMR) showed that Ga0.25-LLZO was favorable for promoting Li+ transport. Moreover, Li|[email protected]|Li symmetric cells exhibit lower interfacial specific impedance (IASR) and higher critical current density (CCD) than both Li|Ag@Ga0-LLZO|Li and Li|[email protected]|Li and was stabilized at 0.15 mA/cm2 for 1300 h of stable cycling. In addition, the all-solid-state battery Li|[email protected]|LFP was cycled at 0.2C for 100 cycles with 82 % capacity retention, demonstrating its promising application in lithium batteries.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.