High order analysis of debonding failure of orthodontic brackets

IF 3.2 3区 材料科学 Q2 ENGINEERING, CHEMICAL International Journal of Adhesion and Adhesives Pub Date : 2024-12-12 DOI:10.1016/j.ijadhadh.2024.103896
B. Azarov , N. Malkiel , O. Rabinovitch
{"title":"High order analysis of debonding failure of orthodontic brackets","authors":"B. Azarov ,&nbsp;N. Malkiel ,&nbsp;O. Rabinovitch","doi":"10.1016/j.ijadhadh.2024.103896","DOIUrl":null,"url":null,"abstract":"<div><div>The paper investigates the initiation and evolution of debonding failure in orthodontic brackets. The latter forms a layered structure consisting of the tooth, an adhesive layer, the bracket, and the inter-laminar interface. The layered structure is prone to debonding, which critically impairs the therapeutic process. The purpose of this study is to develop a quantitative model to analyze the nonlinear and potentially unstable debonding failure in the layered structure. The model integrates the concepts of the high-order theory with nonlinear cohesive interfaces and rigid body displacement field of the bonded bracket. Numerical methods, based on a specially tailored finite element formulation and the arc-length continuation method, trace the full nonlinear response path and characterize its stability. The analysis is validated through comparison with experiments documented in the literature. The principal results quantify the unstable nature of debonding failure and identify factors influencing the instability. The analysis highlights the influence of the rich stress and displacement field in the adhesive layer on failure progression. This is achieved by exploring the coupled role of shear and tensile stresses in the bond layer and the coupling of slip and separation across the interfaces, which jointly form the shear-peel effect, even under globally tangential loading. The major conclusions designate the innovative modeling approach as a tool for the investigation of the interfacial failure mechanism and a steppingstone towards modeling additional features of the layered structure, including curved surfaces, the impact of the surface conditions, and the uncertainty associated with the bonding practice.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"138 ","pages":"Article 103896"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749624002781","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The paper investigates the initiation and evolution of debonding failure in orthodontic brackets. The latter forms a layered structure consisting of the tooth, an adhesive layer, the bracket, and the inter-laminar interface. The layered structure is prone to debonding, which critically impairs the therapeutic process. The purpose of this study is to develop a quantitative model to analyze the nonlinear and potentially unstable debonding failure in the layered structure. The model integrates the concepts of the high-order theory with nonlinear cohesive interfaces and rigid body displacement field of the bonded bracket. Numerical methods, based on a specially tailored finite element formulation and the arc-length continuation method, trace the full nonlinear response path and characterize its stability. The analysis is validated through comparison with experiments documented in the literature. The principal results quantify the unstable nature of debonding failure and identify factors influencing the instability. The analysis highlights the influence of the rich stress and displacement field in the adhesive layer on failure progression. This is achieved by exploring the coupled role of shear and tensile stresses in the bond layer and the coupling of slip and separation across the interfaces, which jointly form the shear-peel effect, even under globally tangential loading. The major conclusions designate the innovative modeling approach as a tool for the investigation of the interfacial failure mechanism and a steppingstone towards modeling additional features of the layered structure, including curved surfaces, the impact of the surface conditions, and the uncertainty associated with the bonding practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Adhesion and Adhesives
International Journal of Adhesion and Adhesives 工程技术-材料科学:综合
CiteScore
6.90
自引率
8.80%
发文量
200
审稿时长
8.3 months
期刊介绍: The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.
期刊最新文献
How can calcium silicate-based sealers impact the mineral phase of root dentin after the use of intracanal medications? A chemical and spectroscopic analysis Effect of the joining temperature on the tensile–shear mechanical properties of clinch-adhesive joints in steel and aluminum alloy sheets n-hexane influence on canola oil adhesion and volumetric properties Impact of thermal and humidity conditions on structural epoxy adhesives during medium-term exposure Sericin and gentamicin-enhanced polyurethane-acrylate adhesives for superior adhesion, biocompatibility and antibacterial property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1