Hao Miao Ouyang , Hai Yan Xu , Guang Tao Fei , Shao Hui Xu , Xin Feng Li , Wen Chao Chen , Shi Jia Li
{"title":"Binder-free SiO2 nanoparticles coated polypropylene separator for high performance lithium-ion battery","authors":"Hao Miao Ouyang , Hai Yan Xu , Guang Tao Fei , Shao Hui Xu , Xin Feng Li , Wen Chao Chen , Shi Jia Li","doi":"10.1016/j.ssi.2025.116783","DOIUrl":null,"url":null,"abstract":"<div><div>The separators play a crucial role in lithium-ion batteries as a safety and functional component. In this study, we have prepared SiO<sub>2</sub> nanoparticles by sol-gel method and spun them to polypropylene separators. The effects of different particle sizes on the surface morphology, electrolyte wettability and thermal stability have been researched. The results show that SiO<sub>2</sub> nanoparticles with an approximately size of 50 nm are the most effective in enhancing the performance of the separator. Compared to the battery assembled with the unmodified separator, the battery assembled with the composite separator modified by SiO<sub>2</sub> nanoparticles exhibits superior cycling and rate performance. Furthermore, these modified batteries exhibited reduced polarization voltage and impedance under the same current conditions, indicating SiO<sub>2</sub> nanoparticles enhanced interface compatibility between the separator and the electrolyte. This suggests that incorporating SiO<sub>2</sub> nanoparticles into the separator design markedly improves battery performance.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"420 ","pages":"Article 116783"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000025","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The separators play a crucial role in lithium-ion batteries as a safety and functional component. In this study, we have prepared SiO2 nanoparticles by sol-gel method and spun them to polypropylene separators. The effects of different particle sizes on the surface morphology, electrolyte wettability and thermal stability have been researched. The results show that SiO2 nanoparticles with an approximately size of 50 nm are the most effective in enhancing the performance of the separator. Compared to the battery assembled with the unmodified separator, the battery assembled with the composite separator modified by SiO2 nanoparticles exhibits superior cycling and rate performance. Furthermore, these modified batteries exhibited reduced polarization voltage and impedance under the same current conditions, indicating SiO2 nanoparticles enhanced interface compatibility between the separator and the electrolyte. This suggests that incorporating SiO2 nanoparticles into the separator design markedly improves battery performance.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.