Tianqi Wang , Xuan Fang , Hongqi Zhao , Yi Zhang , Yuanquan Li , Zhong Li , Wei Seong Toh , James HP. Hui , Jiyuan Yan
{"title":"Small extracellular vesicles from 3D PCL/HA scaffold-cultured and EMF-stimulated BMSCs promote lumbar fusion via PTEN/PI3K/AKT pathway","authors":"Tianqi Wang , Xuan Fang , Hongqi Zhao , Yi Zhang , Yuanquan Li , Zhong Li , Wei Seong Toh , James HP. Hui , Jiyuan Yan","doi":"10.1016/j.compositesb.2025.112165","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic low back pain, typically managed through lumbar fusion, demands innovative approaches to enhance therapeutic outcomes. This study investigated the efficacy of small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMSCs) cultured in three-dimensional (3D) scaffolds concurrently under electromagnetic fields (EMF) stimulation, aiming to enhance osteogenesis and angiogenesis in a rat lumbar fusion model. We utilized a composite of polycaprolactone (PCL) and hydroxyapatite (HA), engineered via 3D printing, to create the scaffolds. sEVs were harvested from BMSCs under three distinct conditions: standard 2D cultures, 3D scaffolds, and 3D scaffolds with EMF stimulation. Specifically, the sEVs from the EMF-stimulated 3D cultures (3D/E-sEVs) were incorporated into these scaffolds before being implanted into rat spines. Therapeutic effectiveness was evaluated <em>in vitro</em> through assays for cell proliferation, migration, and angiogenesis, and <em>in vivo</em> via X-ray imaging, micro-computed tomography (micro-CT), and histological analyses. Results revealed that 3D/E-sEVs markedly enhanced both osteogenesis and angiogenesis. Further mechanistic investigations identified the PTEN/PI3K/AKT signalling pathway as essential in mediating these regenerative effects. Moreover, 3D PCL/HA scaffold loaded with 3D/E-sEVs promote lumbar fusion in a rat model. Conclusively, our findings demonstrated that 3D-printed PCL/HA scaffolds engineered with 3D/E-sEVs significantly promoted bone regeneration and vascular formation, thereby improving lumbar fusion outcomes. This study highlights the profound potential of integrating advanced tissue engineering techniques with cellular therapies to revolutionize the treatment of chronic low back pain and enhance surgical success rates.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"294 ","pages":"Article 112165"},"PeriodicalIF":12.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825000551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic low back pain, typically managed through lumbar fusion, demands innovative approaches to enhance therapeutic outcomes. This study investigated the efficacy of small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMSCs) cultured in three-dimensional (3D) scaffolds concurrently under electromagnetic fields (EMF) stimulation, aiming to enhance osteogenesis and angiogenesis in a rat lumbar fusion model. We utilized a composite of polycaprolactone (PCL) and hydroxyapatite (HA), engineered via 3D printing, to create the scaffolds. sEVs were harvested from BMSCs under three distinct conditions: standard 2D cultures, 3D scaffolds, and 3D scaffolds with EMF stimulation. Specifically, the sEVs from the EMF-stimulated 3D cultures (3D/E-sEVs) were incorporated into these scaffolds before being implanted into rat spines. Therapeutic effectiveness was evaluated in vitro through assays for cell proliferation, migration, and angiogenesis, and in vivo via X-ray imaging, micro-computed tomography (micro-CT), and histological analyses. Results revealed that 3D/E-sEVs markedly enhanced both osteogenesis and angiogenesis. Further mechanistic investigations identified the PTEN/PI3K/AKT signalling pathway as essential in mediating these regenerative effects. Moreover, 3D PCL/HA scaffold loaded with 3D/E-sEVs promote lumbar fusion in a rat model. Conclusively, our findings demonstrated that 3D-printed PCL/HA scaffolds engineered with 3D/E-sEVs significantly promoted bone regeneration and vascular formation, thereby improving lumbar fusion outcomes. This study highlights the profound potential of integrating advanced tissue engineering techniques with cellular therapies to revolutionize the treatment of chronic low back pain and enhance surgical success rates.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.