A data-fusion spatiotemporal matrix factorization approach for citywide traffic flow estimation and prediction under insufficient detection

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-01-13 DOI:10.1016/j.inffus.2025.102952
Zhengchao Zhang , Meng Li
{"title":"A data-fusion spatiotemporal matrix factorization approach for citywide traffic flow estimation and prediction under insufficient detection","authors":"Zhengchao Zhang ,&nbsp;Meng Li","doi":"10.1016/j.inffus.2025.102952","DOIUrl":null,"url":null,"abstract":"<div><div>Citywide traffic flow is essential for the urban traffic planning, traffic signal control, and automotive emission management. However, it is impractical to directly detect the traffic flow of each road segment due to the unaffordable costs of detector installment and maintenance. Under the insufficient detection, the traffic flows of road segments without detectors are totally unknown. Thus, it is imperative to estimate existing values and predict future values for traffic flows of unobserved road segments. To solve this conundrum, we propose a data-fusion spatiotemporal matrix factorization (DSTMF) approach. Firstly, the Gaussian priors are introduced to latent matrices of a matrix factorization model. Secondly, we develop an adaptive spatial regularization term, which models the dependencies of road segments through the knowledge from floating cars’ speed. Thirdly, a learnable autoregressive temporal regularization term is proposed to capture the temporal dependencies of traffic flow and predict future values. Finally, DSTMF is formulated as a quadratic programming and we design an optimization algorithm based on the alternating least squares to solve it. Validated on two real-world large-scale traffic datasets with almost 600 road segments, our method is consistently superior to well-known benchmark models for both the estimation and prediction tasks.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"118 ","pages":"Article 102952"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525000259","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Citywide traffic flow is essential for the urban traffic planning, traffic signal control, and automotive emission management. However, it is impractical to directly detect the traffic flow of each road segment due to the unaffordable costs of detector installment and maintenance. Under the insufficient detection, the traffic flows of road segments without detectors are totally unknown. Thus, it is imperative to estimate existing values and predict future values for traffic flows of unobserved road segments. To solve this conundrum, we propose a data-fusion spatiotemporal matrix factorization (DSTMF) approach. Firstly, the Gaussian priors are introduced to latent matrices of a matrix factorization model. Secondly, we develop an adaptive spatial regularization term, which models the dependencies of road segments through the knowledge from floating cars’ speed. Thirdly, a learnable autoregressive temporal regularization term is proposed to capture the temporal dependencies of traffic flow and predict future values. Finally, DSTMF is formulated as a quadratic programming and we design an optimization algorithm based on the alternating least squares to solve it. Validated on two real-world large-scale traffic datasets with almost 600 road segments, our method is consistently superior to well-known benchmark models for both the estimation and prediction tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training A multiview-slice feature fusion network for early diagnosis of Alzheimer’s disease with structural MRI images Multi-scale convolutional attention frequency-enhanced transformer network for medical image segmentation Learning to estimate probabilistic attitude via matrix Fisher distribution with inertial sensor Learning and grounding visual multimodal adaptive graph for visual navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1