{"title":"A static event-triggered background-impulse Kalman filter for wireless sensor networks with non-Gaussian measurement noise","authors":"Xinkai You, Kangqi Xiao, Gang Wang","doi":"10.1016/j.inffus.2025.102955","DOIUrl":null,"url":null,"abstract":"<div><div>Event-triggered mechanisms (ETMs) have received increasing attention since they provide a way to reduce the communication burden by preventing sensors from transmitting unnecessary measurement values. This article focuses on the problem of a static ETM-based Kalman filter (static ET-KF) failing to work in the case of non-Gaussian measurement noise. To tackle this problem, we combine the static ETM with a background-impulse Kalman filter (BIKF) where the non-Gaussian noise is modeled as a Gaussian mixture model, composed of background noise and impulse noise. First, we make modifications to BIKF to facilitate its integration with the static ETM. Based on this, we propose a static event-triggered background-impulse Kalman filter (static ETBIKF) algorithm for a single sensor. Then we extend the static ETBIKF to the fusion form used for wireless sensor networks. The existing static ET-KF is a special case of our static ETBIKF. Simulations show that the proposed algorithms perform better than static ET-KF under non-Gaussian environments and the communication-saving can reach 45.64% at most.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"118 ","pages":"Article 102955"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525000284","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Event-triggered mechanisms (ETMs) have received increasing attention since they provide a way to reduce the communication burden by preventing sensors from transmitting unnecessary measurement values. This article focuses on the problem of a static ETM-based Kalman filter (static ET-KF) failing to work in the case of non-Gaussian measurement noise. To tackle this problem, we combine the static ETM with a background-impulse Kalman filter (BIKF) where the non-Gaussian noise is modeled as a Gaussian mixture model, composed of background noise and impulse noise. First, we make modifications to BIKF to facilitate its integration with the static ETM. Based on this, we propose a static event-triggered background-impulse Kalman filter (static ETBIKF) algorithm for a single sensor. Then we extend the static ETBIKF to the fusion form used for wireless sensor networks. The existing static ET-KF is a special case of our static ETBIKF. Simulations show that the proposed algorithms perform better than static ET-KF under non-Gaussian environments and the communication-saving can reach 45.64% at most.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.