Subthreshold slope optimization for pentacene based organic tunnel field effect transistor

IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2025-02-01 DOI:10.1016/j.orgel.2024.107176
Nivedha E, Rajesh Agarwal
{"title":"Subthreshold slope optimization for pentacene based organic tunnel field effect transistor","authors":"Nivedha E,&nbsp;Rajesh Agarwal","doi":"10.1016/j.orgel.2024.107176","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional Organic Thin Film Transistors (OTFTs) face significant challenges. Short-channel effects prevent current saturation when scaled to the nanoscale, while the thermionic transport mechanism limits the subthreshold swing to values above 60 mV/dec. To overcome these limitations, a Doped Lateral Organic Tunnel Field Effect Transistor (DL O-TuFET) is proposed. This work examines the influence of source and drain doping on device performance. The higher source doping enhances tunneling probability, while moderate drain doping reduces OFF-current and improves subthreshold swing. Furthermore, the impact of trap density in the active material on device characteristics is investigated. Key performance metrics, including threshold voltage, subthreshold swing, ON/OFF ratio, and RF parameters, are quantitatively analyzed. Simulations using Silvaco TCAD reveal that an optimized source and drain doping of 1 x 10<sup>21</sup> cm<sup>−3</sup> and 1 x 10<sup>19</sup> cm<sup>−3</sup>, respectively, yields promising results. The device exhibits a threshold voltage of −0.963 V, a subthreshold swing of 12.5 mV/decade, an ON/OFF ratio in the range of 10<sup>17</sup>, a maximum electric field of 5.41 × 10<sup>7</sup> V/cm, and a maximum band-to-band tunneling rate of 7.94 x 10<sup>32</sup>/cm<sup>3</sup>s. These values contribute to a maximum ON-current of 83.6 μA, making the DL O-TuFET a viable alternative to conventional OTFTs. Moreover, a maximum cut-off frequency of 0.66 GHz demonstrates its suitability for higher-speed applications.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"137 ","pages":"Article 107176"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001873","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional Organic Thin Film Transistors (OTFTs) face significant challenges. Short-channel effects prevent current saturation when scaled to the nanoscale, while the thermionic transport mechanism limits the subthreshold swing to values above 60 mV/dec. To overcome these limitations, a Doped Lateral Organic Tunnel Field Effect Transistor (DL O-TuFET) is proposed. This work examines the influence of source and drain doping on device performance. The higher source doping enhances tunneling probability, while moderate drain doping reduces OFF-current and improves subthreshold swing. Furthermore, the impact of trap density in the active material on device characteristics is investigated. Key performance metrics, including threshold voltage, subthreshold swing, ON/OFF ratio, and RF parameters, are quantitatively analyzed. Simulations using Silvaco TCAD reveal that an optimized source and drain doping of 1 x 1021 cm−3 and 1 x 1019 cm−3, respectively, yields promising results. The device exhibits a threshold voltage of −0.963 V, a subthreshold swing of 12.5 mV/decade, an ON/OFF ratio in the range of 1017, a maximum electric field of 5.41 × 107 V/cm, and a maximum band-to-band tunneling rate of 7.94 x 1032/cm3s. These values contribute to a maximum ON-current of 83.6 μA, making the DL O-TuFET a viable alternative to conventional OTFTs. Moreover, a maximum cut-off frequency of 0.66 GHz demonstrates its suitability for higher-speed applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并五苯基有机隧道场效应晶体管的亚阈值斜率优化
传统的有机薄膜晶体管(OTFTs)面临着巨大的挑战。当缩放到纳米尺度时,短通道效应防止电流饱和,而热离子传输机制将亚阈值摆幅限制在60 mV/dec以上。为了克服这些限制,提出了一种掺杂横向有机隧道场效应晶体管(DL O-TuFET)。本研究考察了源极和漏极掺杂对器件性能的影响。较高的源极掺杂提高了隧穿概率,而适度的漏极掺杂降低了断流,改善了亚阈值摆幅。此外,还研究了活性材料中陷阱密度对器件特性的影响。关键性能指标,包括阈值电压、亚阈值摆幅、开/关比和射频参数,进行了定量分析。利用Silvaco TCAD进行的模拟表明,优化后的源极掺杂和漏极掺杂分别为1 × 1021 cm−3和1 × 1019 cm−3,得到了令人满意的结果。该器件的阈值电压为−0.963 V,亚阈值摆幅为12.5 mV/ 10年,开/关比为1017,最大电场为5.41 × 107 V/cm,最大带间隧穿速率为7.94 × 1032/cm3。这些值有助于最大导通电流为83.6 μA,使DL O-TuFET成为传统otft的可行替代品。此外,0.66 GHz的最大截止频率表明其适用于高速应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
The Cs2BiAgI6 advantage: Interplay of thickness and recombination for high-performance double perovskite solar cells Corrigendum to “Theory of carrier accumulation in organic heterojunctions.” and “Carrier accumulation in organic heterojunctions controlled by polarization” The role of water in tailoring thermoelectric PEDOT:PSS films Additively manufactured organic field effect transistor and circuit with bifunctional molecule engineered dielectric/semiconductor interface Dual-emissive carbon dots for detection of chloramphenicol in tap water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1