Approaches for white organic light-emitting diode via solution-processed blue and yellow TADF emitters: Charge balance and host-guest interactions in a single emission layer

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2025-02-01 DOI:10.1016/j.orgel.2024.107175
Emmanuel Santos Moraes, José Carlos Germino, Luiz Pereira
{"title":"Approaches for white organic light-emitting diode via solution-processed blue and yellow TADF emitters: Charge balance and host-guest interactions in a single emission layer","authors":"Emmanuel Santos Moraes,&nbsp;José Carlos Germino,&nbsp;Luiz Pereira","doi":"10.1016/j.orgel.2024.107175","DOIUrl":null,"url":null,"abstract":"<div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (233KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span>Although OLEDs are widely employed nowadays for display technology devices, their application for room-lighting illumination remains a challenge due to the cost-effectiveness issues, mainly related to device fabrication. In this sense, the present study investigates the optimization of blue-emitting TADF (DMOC-DPS) and yellow-emitting TADF (TXO-TPA) compounds in solution-processed OLEDs to achieve efficient white light emission in a two-organic layer device. Four different host materials were studied, aiming to balance the charge mobility of holes and electrons. The host materials used include (in %wt.) a 1:1 mixture of mCP and DPEPO (<strong>HOST1</strong>), a 3:2 mixture of PVK and DPEPO (<strong>HOST2</strong>), a 3:2 mixture of PVK and mCP (<strong>HOST3</strong>), and a 3:2 mixture of PVK and butyl-PBD (<strong>HOST4</strong>). The experimental results obtained from the solution-processed OLEDs indicate that DMOC-DPS is predominantly a hole transport material, and hosts with predominantly n-type character, such as <strong>HOST1</strong> and <strong>HOST4</strong>, resulting in the most efficient white-OLEDs by the most balanced charge mobility. With structure optimization, WOLEDs achieved 6.43 % EQE with a brightness of 2621 cd/m<sup>2</sup> (not integrated) and 6.06 % EQE with a brightness of 1986 cd/m<sup>2</sup> for <strong>HOST4</strong> and <strong>HOST1</strong>, respectively. The emission characteristics were influenced by host materials characteristics, with blue and yellow emissions being fine-tuned to produce complementary colors. This study highlights the critical role of charge mobility balance in the emissive layer and demonstrates the potential of independently optimizing blue and yellow TADF components for high-performance WOLEDs suitable for indoor lighting applications.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"137 ","pages":"Article 107175"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001861","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

  1. Download: Download high-res image (233KB)
  2. Download: Download full-size image
Although OLEDs are widely employed nowadays for display technology devices, their application for room-lighting illumination remains a challenge due to the cost-effectiveness issues, mainly related to device fabrication. In this sense, the present study investigates the optimization of blue-emitting TADF (DMOC-DPS) and yellow-emitting TADF (TXO-TPA) compounds in solution-processed OLEDs to achieve efficient white light emission in a two-organic layer device. Four different host materials were studied, aiming to balance the charge mobility of holes and electrons. The host materials used include (in %wt.) a 1:1 mixture of mCP and DPEPO (HOST1), a 3:2 mixture of PVK and DPEPO (HOST2), a 3:2 mixture of PVK and mCP (HOST3), and a 3:2 mixture of PVK and butyl-PBD (HOST4). The experimental results obtained from the solution-processed OLEDs indicate that DMOC-DPS is predominantly a hole transport material, and hosts with predominantly n-type character, such as HOST1 and HOST4, resulting in the most efficient white-OLEDs by the most balanced charge mobility. With structure optimization, WOLEDs achieved 6.43 % EQE with a brightness of 2621 cd/m2 (not integrated) and 6.06 % EQE with a brightness of 1986 cd/m2 for HOST4 and HOST1, respectively. The emission characteristics were influenced by host materials characteristics, with blue and yellow emissions being fine-tuned to produce complementary colors. This study highlights the critical role of charge mobility balance in the emissive layer and demonstrates the potential of independently optimizing blue and yellow TADF components for high-performance WOLEDs suitable for indoor lighting applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
Synthesis and application of dithieno[3,2-b:2′,3′-d]thiophene conjugated copolymer for organic field effect transistors and nitrogen dioxide sensors Evaluation of thermal effects on natural organic honey memristive thin film for resistive switching memory applications Navigating the relationship between voltage losses and efficiency in organic solar cells Effect of various parameters on sorting semiconducting carbon nanotubes using polyfluorene for high-performance field-effect transistors Photo- and electroluminescent properties of V-shaped fused-biscoumarins containing tert-butyl group modified imidazole/carbazole groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1