Republication de : Optimization of the automated Sunnybrook Facial Grading System – Improving the reliability of a deep learning network with facial landmarks

T.C. ten Harkel , F. Bielevelt , H.A.M. Marres , K.J.A.O. Ingels , T.J.J. Maal , C.M. Speksnijder
{"title":"Republication de : Optimization of the automated Sunnybrook Facial Grading System – Improving the reliability of a deep learning network with facial landmarks","authors":"T.C. ten Harkel ,&nbsp;F. Bielevelt ,&nbsp;H.A.M. Marres ,&nbsp;K.J.A.O. Ingels ,&nbsp;T.J.J. Maal ,&nbsp;C.M. Speksnijder","doi":"10.1016/j.aforl.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The Sunnybrook Facial Grading System (SFGS) is a well-established grading system to assess the severity and progression of a unilateral facial palsy. The automation of the SFGS makes the SFGS more accessible for researchers, students, clinicians in training, or other untrained co-workers and could be implemented in an eHealth environment. This study investigated the impact on the reliability of the automated SFGS by adding a facial landmark layer in a previously developed convolutional neural network (CNN).</div></div><div><h3>Methods</h3><div>An existing dataset of 116 patients with a unilateral peripheral facial palsy and 9 healthy subjects performing the SFGS poses was used to train a CNN with a newly added facial landmark layer. A separate model was trained for each of the 13 elements of the SFGS and then used to calculate the SFGS subscores and composite score. The intra-class coefficient of the automated grading system was calculated based on three clinicians experienced in the grading of facial palsy.</div></div><div><h3>Results</h3><div>The inter-rater reliability of the CNN with the additional facial landmarks increased in performance for all composite scores compared to the previous model. The intra-class coefficient for the composite SFGS score increased from 0.87 to 0.91, the resting symmetry subscore increased from 0.45 to 0.62, the symmetry of voluntary movement subscore increased from 0.89 to 0.92, and the synkinesis subscore increased from 0.75 to 0.78.</div></div><div><h3>Conclusion</h3><div>The integration of a facial landmark layer into the CNN significantly improved the reliability of the automated SFGS, reaching a performance level comparable to human observers. These results were attained without increasing the dataset underscoring the impact of incorporating facial landmarks into a CNN. These findings indicate that the automated SFGS with facial landmarks is a reliable tool for assessing patients with a unilateral peripheral facial palsy and is applicable in an eHealth environment.</div></div>","PeriodicalId":38853,"journal":{"name":"Annales Francaises d''Oto-Rhino-Laryngologie et de Pathologie Cervico-Faciale","volume":"142 1","pages":"Pages 5-11"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Francaises d''Oto-Rhino-Laryngologie et de Pathologie Cervico-Faciale","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879726125000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

The Sunnybrook Facial Grading System (SFGS) is a well-established grading system to assess the severity and progression of a unilateral facial palsy. The automation of the SFGS makes the SFGS more accessible for researchers, students, clinicians in training, or other untrained co-workers and could be implemented in an eHealth environment. This study investigated the impact on the reliability of the automated SFGS by adding a facial landmark layer in a previously developed convolutional neural network (CNN).

Methods

An existing dataset of 116 patients with a unilateral peripheral facial palsy and 9 healthy subjects performing the SFGS poses was used to train a CNN with a newly added facial landmark layer. A separate model was trained for each of the 13 elements of the SFGS and then used to calculate the SFGS subscores and composite score. The intra-class coefficient of the automated grading system was calculated based on three clinicians experienced in the grading of facial palsy.

Results

The inter-rater reliability of the CNN with the additional facial landmarks increased in performance for all composite scores compared to the previous model. The intra-class coefficient for the composite SFGS score increased from 0.87 to 0.91, the resting symmetry subscore increased from 0.45 to 0.62, the symmetry of voluntary movement subscore increased from 0.89 to 0.92, and the synkinesis subscore increased from 0.75 to 0.78.

Conclusion

The integration of a facial landmark layer into the CNN significantly improved the reliability of the automated SFGS, reaching a performance level comparable to human observers. These results were attained without increasing the dataset underscoring the impact of incorporating facial landmarks into a CNN. These findings indicate that the automated SFGS with facial landmarks is a reliable tool for assessing patients with a unilateral peripheral facial palsy and is applicable in an eHealth environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
93
审稿时长
51 days
期刊最新文献
Editorial Board Republication de : Optimization of the automated Sunnybrook Facial Grading System – Improving the reliability of a deep learning network with facial landmarks CV3 / Remerciements aux relecteurs La Société internationale francophone ORL (SIFORL) : une société dynamique et ambitieuse Une cause rare de lésion végétante sur un site de chirurgie reconstructrice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1