{"title":"A meso‑structure based yield stress for fresh concrete","authors":"Kumar Anjneya , Arghya Deb","doi":"10.1016/j.ijmecsci.2025.109962","DOIUrl":null,"url":null,"abstract":"<div><div>Existing empirical relations for predicting the yield stress of concrete are not of general applicability and provide no understanding of the role of meso‑structure. Moreover, experimental yield stress measurements tend to vary with the type of rheometer. The study proposes a discrete element formulation to compute a meso‑structure-based yield stress that is applicable to different meso‑geometries and is valid across diverse flow regimes. The procedure relies on a mesoscale model based on stresses and displacements, which makes it easier to account for the effects of particle shape, size, and orientation. The model incorporates coupling between normal and shear damage in the aggregate-mortar bond, thus enabling reduction in bond shear strength due to excessive stretching in the normal direction. Discrete specimens are generated to simulate well-known flowability tests. The results match experiments for both elongational and shear flow. The validated model is then used to investigate the effect of aggregate angularity and size. The results suggest that viscous forces are largely responsible for the experimentally observed increase in yield stress with reduction in maximum aggregate size. The meso‑structure-based yield stress is seen to be invariant with respect to the type of test and size of the specimen simulated. The predicted yield stress values also compare well with the BML rheometer and two-point test, with the mean percentage error with respect to the BML readings being around 2 %.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"288 ","pages":"Article 109962"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325000487","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Existing empirical relations for predicting the yield stress of concrete are not of general applicability and provide no understanding of the role of meso‑structure. Moreover, experimental yield stress measurements tend to vary with the type of rheometer. The study proposes a discrete element formulation to compute a meso‑structure-based yield stress that is applicable to different meso‑geometries and is valid across diverse flow regimes. The procedure relies on a mesoscale model based on stresses and displacements, which makes it easier to account for the effects of particle shape, size, and orientation. The model incorporates coupling between normal and shear damage in the aggregate-mortar bond, thus enabling reduction in bond shear strength due to excessive stretching in the normal direction. Discrete specimens are generated to simulate well-known flowability tests. The results match experiments for both elongational and shear flow. The validated model is then used to investigate the effect of aggregate angularity and size. The results suggest that viscous forces are largely responsible for the experimentally observed increase in yield stress with reduction in maximum aggregate size. The meso‑structure-based yield stress is seen to be invariant with respect to the type of test and size of the specimen simulated. The predicted yield stress values also compare well with the BML rheometer and two-point test, with the mean percentage error with respect to the BML readings being around 2 %.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.