A multi-rocket piston model to study three-dimensional asymmetries in implosions at the national ignition facility

IF 1.6 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS High Energy Density Physics Pub Date : 2024-12-11 DOI:10.1016/j.hedp.2024.101172
D.T. Casey , J. Kunimune , O.A. Hurricane , O.L. Landen , P. Springer , R.M. Bionta , C.V. Young , R.C. Nora , B.J. MacGowan , J.A. Gaffney , B. Kustowski , C. Weber , A. Kritcher , J. Milovich , S. Haan , M. Gatu Johnson , D. Schlossberg , S. Kerr , P.L. Volegov , D.N. Fittinghoff , M. Freeman
{"title":"A multi-rocket piston model to study three-dimensional asymmetries in implosions at the national ignition facility","authors":"D.T. Casey ,&nbsp;J. Kunimune ,&nbsp;O.A. Hurricane ,&nbsp;O.L. Landen ,&nbsp;P. Springer ,&nbsp;R.M. Bionta ,&nbsp;C.V. Young ,&nbsp;R.C. Nora ,&nbsp;B.J. MacGowan ,&nbsp;J.A. Gaffney ,&nbsp;B. Kustowski ,&nbsp;C. Weber ,&nbsp;A. Kritcher ,&nbsp;J. Milovich ,&nbsp;S. Haan ,&nbsp;M. Gatu Johnson ,&nbsp;D. Schlossberg ,&nbsp;S. Kerr ,&nbsp;P.L. Volegov ,&nbsp;D.N. Fittinghoff ,&nbsp;M. Freeman","doi":"10.1016/j.hedp.2024.101172","DOIUrl":null,"url":null,"abstract":"<div><div>Ignition and gain greater than unity has been achieved in inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). These accomplishments required implosions that produced high hotspot pressures that are inertially confined by a dense shell of DT fuel. However, even in the burning and igniting plasma regime, 3D asymmetries can reduce the coupling of shell kinetic energy to the hotspot harming the overall implosion performance and truncating burn. Likewise, the overall scale of the implosion can be minimized by maintaining a high efficiency of energy coupling from the imploding shell to the hotspot. Recent experiments commonly show signs of significant 3D asymmetry that manifest as high hotspot velocity or asymmetry in the self-emission and scattered neutron images. While modeling 3D asymmetries in implosion with full scale hydrodynamic simulations is often performed, it is labor intensive and computationally costly. Therefore, 3D simulation is applied only in special cases like experiments of particular interest. To enable a wider survey of 3D post-shot analysis, an approximate but computationally inexpensive approach is applied by using multiple rocket-pistons discretizing the spherical implosion. These rocket-pistons are coupled together through the central hotspot pressure using the power balance equations. The approach is similar to that reported by Springer [Springer et al., Nuclear Fusion <strong>59</strong> (3) (2019)] with the inclusion of an approximate hohlraum model beginning at the rocket-implosion stage and post-processing of realistic synthetic diagnostic data at the stagnation and peak burn. This rocket piston tool can provide approximate 3D image and diagnostic data that can then be compared quantitively with data enabling new techniques in iterative, forward fitting, and machine learning to interpreting measurements.</div></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"54 ","pages":"Article 101172"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181824000971","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Ignition and gain greater than unity has been achieved in inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). These accomplishments required implosions that produced high hotspot pressures that are inertially confined by a dense shell of DT fuel. However, even in the burning and igniting plasma regime, 3D asymmetries can reduce the coupling of shell kinetic energy to the hotspot harming the overall implosion performance and truncating burn. Likewise, the overall scale of the implosion can be minimized by maintaining a high efficiency of energy coupling from the imploding shell to the hotspot. Recent experiments commonly show signs of significant 3D asymmetry that manifest as high hotspot velocity or asymmetry in the self-emission and scattered neutron images. While modeling 3D asymmetries in implosion with full scale hydrodynamic simulations is often performed, it is labor intensive and computationally costly. Therefore, 3D simulation is applied only in special cases like experiments of particular interest. To enable a wider survey of 3D post-shot analysis, an approximate but computationally inexpensive approach is applied by using multiple rocket-pistons discretizing the spherical implosion. These rocket-pistons are coupled together through the central hotspot pressure using the power balance equations. The approach is similar to that reported by Springer [Springer et al., Nuclear Fusion 59 (3) (2019)] with the inclusion of an approximate hohlraum model beginning at the rocket-implosion stage and post-processing of realistic synthetic diagnostic data at the stagnation and peak burn. This rocket piston tool can provide approximate 3D image and diagnostic data that can then be compared quantitively with data enabling new techniques in iterative, forward fitting, and machine learning to interpreting measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
High Energy Density Physics
High Energy Density Physics PHYSICS, FLUIDS & PLASMAS-
CiteScore
4.20
自引率
6.20%
发文量
13
审稿时长
6-12 weeks
期刊介绍: High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings. Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.
期刊最新文献
On the number of atomic configurations in hot plasmas Pseudoatom molecular dynamics plasma microfields A multi-rocket piston model to study three-dimensional asymmetries in implosions at the national ignition facility Effect of external magnetic field inhomogeneity on the nonlinear absorption of intense laser pulse in inhomogeneous warm plasma Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1