Arangarajan Vinayagam , S.T. Suganthi , C.B. Venkatramanan , Ayoob Alateeq , Abdullah Alassaf , Nur Fadilah Ab Aziz , Mohd Helmi Mansor , Saad Mekhilef
{"title":"Discrimination of high impedance fault in microgrid power network using semi-supervised machine learning algorithm","authors":"Arangarajan Vinayagam , S.T. Suganthi , C.B. Venkatramanan , Ayoob Alateeq , Abdullah Alassaf , Nur Fadilah Ab Aziz , Mohd Helmi Mansor , Saad Mekhilef","doi":"10.1016/j.asej.2024.103187","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a semi-supervised classification approach for discriminating high-impedance (HI) faults and other transients in a photovoltaic (PV) interconnected microgrid (MG) network. The suggested classifier combines unsupervised K-means clustering with the supervised multi-layer perceptron neural network algorithm. The K-means clustering technique is utilized in the first phase to detect and remove irrelevant instances from multiple events in the data set. To obtain the final predictions of targeted labels, clustered cases from the first phase are utilized to learn the multi-layer perceptron neural network classifier in the next phase. The suggested method outperforms stand-alone classifiers (K-means clustering and multi-layer perceptron) by providing enhanced accuracy and success rate of discriminating HI fault under standard test conditions and weather intermittency of PV. Furthermore, the results of the performance study clearly show that the suggested model is more resilient and offers superior performance than the stand-alone classifiers under the standard test condition and uncertainty of PV in MG networks.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 1","pages":"Article 103187"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924005689","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a semi-supervised classification approach for discriminating high-impedance (HI) faults and other transients in a photovoltaic (PV) interconnected microgrid (MG) network. The suggested classifier combines unsupervised K-means clustering with the supervised multi-layer perceptron neural network algorithm. The K-means clustering technique is utilized in the first phase to detect and remove irrelevant instances from multiple events in the data set. To obtain the final predictions of targeted labels, clustered cases from the first phase are utilized to learn the multi-layer perceptron neural network classifier in the next phase. The suggested method outperforms stand-alone classifiers (K-means clustering and multi-layer perceptron) by providing enhanced accuracy and success rate of discriminating HI fault under standard test conditions and weather intermittency of PV. Furthermore, the results of the performance study clearly show that the suggested model is more resilient and offers superior performance than the stand-alone classifiers under the standard test condition and uncertainty of PV in MG networks.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.