Sustainable construction solutions: The role of sugar factory lime waste-activated slag in high-performance concrete

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Ain Shams Engineering Journal Pub Date : 2025-02-17 DOI:10.1016/j.asej.2025.103315
Hadi Bahmani, Davood Mostofinejad
{"title":"Sustainable construction solutions: The role of sugar factory lime waste-activated slag in high-performance concrete","authors":"Hadi Bahmani,&nbsp;Davood Mostofinejad","doi":"10.1016/j.asej.2025.103315","DOIUrl":null,"url":null,"abstract":"<div><div>This pioneering research aims to develop high-performance concrete (HPC) using waste lime from sugar factories to activate slag. The study explores the transformative effects of high-temperature treatment on sugar factory lime waste and its potential to enhance slag activation, representing a novel approach in sustainable construction materials. The newly formulated HPC was rigorously compared with traditional counterparts made from calcium oxide-activated slag and calcined dolomite. A comprehensive series of tests were conducted at 28 days, assessing critical performance metrics, including compressive strength, four-point bending strength, tensile strength, and water absorption. Microstructural analysis was performed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The results revealed that samples activated with 10 % sugar factory lime waste achieved a compressive strength of approximately 80 MPa, rivaling samples activated with 10 % calcium oxide. These lime-activated samples also demonstrated outstanding tensile and bending strengths of 5.6 MPa and 6.6 MPa, respectively—the highest recorded in this study. The microstructural analysis indicated a dense microstructure with an elevated Si/Al ratio and significant geopolymerization. The low water absorption rate of 2.1 % highlighted the reduced porosity of this innovative geopolymeric matrix. This research is the first to investigate the high-temperature treatment of sugar factory lime waste for slag activation in HPC. The findings suggest that incorporating 10 % waste lime significantly lowers the climate change impact index to 397.6 kg CO<sub>2</sub> eq—12 % less than samples with 30 % calcium oxide and 7 % lower than those with 30 % dolomite. Using sugar factory waste lime enhances mechanical properties and promotes environmental sustainability, presenting a compelling alternative that excels in both performance and ecological benefits.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103315"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This pioneering research aims to develop high-performance concrete (HPC) using waste lime from sugar factories to activate slag. The study explores the transformative effects of high-temperature treatment on sugar factory lime waste and its potential to enhance slag activation, representing a novel approach in sustainable construction materials. The newly formulated HPC was rigorously compared with traditional counterparts made from calcium oxide-activated slag and calcined dolomite. A comprehensive series of tests were conducted at 28 days, assessing critical performance metrics, including compressive strength, four-point bending strength, tensile strength, and water absorption. Microstructural analysis was performed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The results revealed that samples activated with 10 % sugar factory lime waste achieved a compressive strength of approximately 80 MPa, rivaling samples activated with 10 % calcium oxide. These lime-activated samples also demonstrated outstanding tensile and bending strengths of 5.6 MPa and 6.6 MPa, respectively—the highest recorded in this study. The microstructural analysis indicated a dense microstructure with an elevated Si/Al ratio and significant geopolymerization. The low water absorption rate of 2.1 % highlighted the reduced porosity of this innovative geopolymeric matrix. This research is the first to investigate the high-temperature treatment of sugar factory lime waste for slag activation in HPC. The findings suggest that incorporating 10 % waste lime significantly lowers the climate change impact index to 397.6 kg CO2 eq—12 % less than samples with 30 % calcium oxide and 7 % lower than those with 30 % dolomite. Using sugar factory waste lime enhances mechanical properties and promotes environmental sustainability, presenting a compelling alternative that excels in both performance and ecological benefits.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
期刊最新文献
Sustainable cities and urban dynamics: The role of the café culture in transforming the public realm Tropical Cyclone Intensity Prediction using Bayesian Machine Learning with Marine Predators Algorithm on Satellite Cloud Imagery Sustainable construction solutions: The role of sugar factory lime waste-activated slag in high-performance concrete Data-driven optimal adaptive MPPT techniques for grid-connected photovoltaic systems Incorporating stochasticity in demands for optimizing resource allocation in versatile edge systems devoid of layer constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1