Muhammad Swaileh A. Alzaidi , Alya Alshammari , Abdulkhaleq QA Hassan , Shouki A. Ebad , Hanan Al Sultan , Mohammed A. Alliheedi , Ali Abdulaziz Aljubailan , Khadija Abdullah Alzahrani
{"title":"Enhanced automated text categorization via Aquila optimizer with deep learning for Arabic news articles","authors":"Muhammad Swaileh A. Alzaidi , Alya Alshammari , Abdulkhaleq QA Hassan , Shouki A. Ebad , Hanan Al Sultan , Mohammed A. Alliheedi , Ali Abdulaziz Aljubailan , Khadija Abdullah Alzahrani","doi":"10.1016/j.asej.2024.103189","DOIUrl":null,"url":null,"abstract":"<div><div>Text Classification is the traditional Natural Language Processing (NLP) task. Text classification (also known as categorization) has become a cutting-edge research area in recent years. However, this task has received less attention in Arabic due to the need for more extensive resources for training Arabic text classifiers. In the area of text classification for Arabic news articles, deep learning (DL) methods, namely recurrent neural network (RNN) and convolutional neural network (CNN), were effectively used. This model is trained on labelled datasets around many news topics to automatically categorize articles into predetermined classes. These DL techniques can efficiently discern the subject matter by leveraging the contextual and semantic data embedded in the Arabic text, enabling accurate classification. This application of DL facilitates effective retrieval and organization of Arabic news articles, which supports tasks such as personalized content recommendations, information retrieval, and summarization. Therefore, this study presents an Enhanced Automated Text Categorization via Aquila Optimizer with Deep Learning for Arabic News Articles (TCAODL-ANA) technique. The TCAODL-ANA technique aims to detect and classify Arabic news articles into seven classes. The TCAODL-ANA technique follows pre-processing and the FastText word embedding process to accomplish this. In addition, the TCAODL-ANA technique utilizes an effective attention-based bidirectional gated recurrent unit (ABiGRU) method to identify various news articles. To enhance the detection results of the ABiGRU method, the AO model is employed for the hyperparameter selection process. A comprehensive simulation evaluation is performed to emphasize the improved performance of the TCAODL-ANA technique. The investigational validation portrayed the superior outcomes of the TCAODL-ANA technique over existing techniques.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 1","pages":"Article 103189"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924005707","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Text Classification is the traditional Natural Language Processing (NLP) task. Text classification (also known as categorization) has become a cutting-edge research area in recent years. However, this task has received less attention in Arabic due to the need for more extensive resources for training Arabic text classifiers. In the area of text classification for Arabic news articles, deep learning (DL) methods, namely recurrent neural network (RNN) and convolutional neural network (CNN), were effectively used. This model is trained on labelled datasets around many news topics to automatically categorize articles into predetermined classes. These DL techniques can efficiently discern the subject matter by leveraging the contextual and semantic data embedded in the Arabic text, enabling accurate classification. This application of DL facilitates effective retrieval and organization of Arabic news articles, which supports tasks such as personalized content recommendations, information retrieval, and summarization. Therefore, this study presents an Enhanced Automated Text Categorization via Aquila Optimizer with Deep Learning for Arabic News Articles (TCAODL-ANA) technique. The TCAODL-ANA technique aims to detect and classify Arabic news articles into seven classes. The TCAODL-ANA technique follows pre-processing and the FastText word embedding process to accomplish this. In addition, the TCAODL-ANA technique utilizes an effective attention-based bidirectional gated recurrent unit (ABiGRU) method to identify various news articles. To enhance the detection results of the ABiGRU method, the AO model is employed for the hyperparameter selection process. A comprehensive simulation evaluation is performed to emphasize the improved performance of the TCAODL-ANA technique. The investigational validation portrayed the superior outcomes of the TCAODL-ANA technique over existing techniques.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.