Mohammad Yaghtin, Youness Javid, Mostafa Abouei Ardakan
{"title":"Multi-objective optimization in the design of load sharing systems with mixed redundancy strategies under random shocks","authors":"Mohammad Yaghtin, Youness Javid, Mostafa Abouei Ardakan","doi":"10.1016/j.jocs.2024.102495","DOIUrl":null,"url":null,"abstract":"<div><div>The redundancy allocation problem (RAP) focuses on assigning one or more components in parallel to enhance the overall reliability of a system. Selecting a redundancy type (active or standby) for each component is a critical challenge in system design. Active components can share the load among themselves (unlike standby components), and standby components are not subjected to shock attacks (unlike active components). This research presents a multi-objective optimization model to enhance system reliability and minimize costs. The proposed model is designed for a load-sharing system with a series-parallel structure, subject to shock attacks. Reliability (availability) is calculated using a stochastic approach based on the Markov chain, and the NSGA-II algorithm solves the multi-objective optimization problem. Two numerical examples investigate the proposed approach, identifying appropriate solutions through Pareto frontiers and analyzing the impact of load-sharing and shock attacks on optimization results.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"85 ","pages":"Article 102495"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002886","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The redundancy allocation problem (RAP) focuses on assigning one or more components in parallel to enhance the overall reliability of a system. Selecting a redundancy type (active or standby) for each component is a critical challenge in system design. Active components can share the load among themselves (unlike standby components), and standby components are not subjected to shock attacks (unlike active components). This research presents a multi-objective optimization model to enhance system reliability and minimize costs. The proposed model is designed for a load-sharing system with a series-parallel structure, subject to shock attacks. Reliability (availability) is calculated using a stochastic approach based on the Markov chain, and the NSGA-II algorithm solves the multi-objective optimization problem. Two numerical examples investigate the proposed approach, identifying appropriate solutions through Pareto frontiers and analyzing the impact of load-sharing and shock attacks on optimization results.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).