Community-based voting approach to enhance the spreading dynamics by identifying a group of influential spreaders in complex networks

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Science Pub Date : 2025-02-12 DOI:10.1016/j.jocs.2025.102540
Suman Nandi , Mariana Curado Malta , Giridhar Maji , Animesh Dutta
{"title":"Community-based voting approach to enhance the spreading dynamics by identifying a group of influential spreaders in complex networks","authors":"Suman Nandi ,&nbsp;Mariana Curado Malta ,&nbsp;Giridhar Maji ,&nbsp;Animesh Dutta","doi":"10.1016/j.jocs.2025.102540","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring a group of influential spreaders to acquire maximum influence has become an emerging area of research in complex network analysis. The main challenge of this research is to identify the group of important nodes that are scattered broadly, such that the propagation ability of information is maximum to a network. Researchers proposed many centrality-based approaches with certain limitations to identify the influential nodes (spreaders) considering different properties of the networks. To find a group of spreaders, the VoteRank (a voting mechanism) based method produces effective results with low time complexity, where in each iteration, the node votes for its neighbors by its voting capability, and the node obtaining the maximum vote score is identified as an influential spreader. The major loophole of existing VoteRank methods is measuring the voting capability based on the degree, k-shell index, or contribution of neighbors methods, which does not efficiently identify the spreaders from the diverse regions based on their spreading ability. In this paper, we propose a novel Community-based VoteRank method (CVoteRank) to identify a group of influential spreaders from diverse network regions by which the diffusion process is enhanced. Firstly, we measure every node’s spreading ability based on intra- and inter-connectivity structure in a community, which signifies the local and global importance of the node. To identify the seed nodes, we assign the spreading ability to that node’s voting capability and iteratively calculate the voting score of a node based on its neighboring voting capability and its spreading ability. Then, the node acquiring the maximum voting score is identified as the influential spreader in each iteration. Finally, to solve the problem of influence overlapping, CVoteRank reduces the voting capability of the neighboring nodes of the identified spreader. The efficiency of CVoteRank is evaluated and compared with the different state-of-the-art methods on twelve real networks. Utilizing the stochastic susceptible–infected–recovered epidemic method, we calculate the infected scale, final infected scale, and the average shortest path length among the identified spreaders. The experimental results show that CVoteRank identifies the most efficient spreaders with the highest spreading ability within a short period and the maximum reachability, and the identified spreaders are situated at diverse portions of the networks.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"86 ","pages":"Article 102540"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000171","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring a group of influential spreaders to acquire maximum influence has become an emerging area of research in complex network analysis. The main challenge of this research is to identify the group of important nodes that are scattered broadly, such that the propagation ability of information is maximum to a network. Researchers proposed many centrality-based approaches with certain limitations to identify the influential nodes (spreaders) considering different properties of the networks. To find a group of spreaders, the VoteRank (a voting mechanism) based method produces effective results with low time complexity, where in each iteration, the node votes for its neighbors by its voting capability, and the node obtaining the maximum vote score is identified as an influential spreader. The major loophole of existing VoteRank methods is measuring the voting capability based on the degree, k-shell index, or contribution of neighbors methods, which does not efficiently identify the spreaders from the diverse regions based on their spreading ability. In this paper, we propose a novel Community-based VoteRank method (CVoteRank) to identify a group of influential spreaders from diverse network regions by which the diffusion process is enhanced. Firstly, we measure every node’s spreading ability based on intra- and inter-connectivity structure in a community, which signifies the local and global importance of the node. To identify the seed nodes, we assign the spreading ability to that node’s voting capability and iteratively calculate the voting score of a node based on its neighboring voting capability and its spreading ability. Then, the node acquiring the maximum voting score is identified as the influential spreader in each iteration. Finally, to solve the problem of influence overlapping, CVoteRank reduces the voting capability of the neighboring nodes of the identified spreader. The efficiency of CVoteRank is evaluated and compared with the different state-of-the-art methods on twelve real networks. Utilizing the stochastic susceptible–infected–recovered epidemic method, we calculate the infected scale, final infected scale, and the average shortest path length among the identified spreaders. The experimental results show that CVoteRank identifies the most efficient spreaders with the highest spreading ability within a short period and the maximum reachability, and the identified spreaders are situated at diverse portions of the networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
期刊最新文献
Establishing a massively parallel computational model of the adaptive immune response Unsupervised continual learning by cross-level, instance-group and pseudo-group discrimination with hard attention A cluster-based opposition differential evolution algorithm boosted by a local search for ECG signal classification Community-based voting approach to enhance the spreading dynamics by identifying a group of influential spreaders in complex networks Deep dive into generative models through feature interpoint distances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1