Henri Casanova , Arnaud Giersch , Arnaud Legrand , Martin Quinson , Frédéric Suter
{"title":"Lowering entry barriers to developing custom simulators of distributed applications and platforms with SimGrid","authors":"Henri Casanova , Arnaud Giersch , Arnaud Legrand , Martin Quinson , Frédéric Suter","doi":"10.1016/j.parco.2025.103125","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers in parallel and distributed computing (PDC) often resort to simulation because experiments conducted using a simulator can be for arbitrary experimental scenarios, are less resource-, labor-, and time-consuming than their real-world counterparts, and are perfectly repeatable and observable. Many frameworks have been developed to ease the development of PDC simulators, and these frameworks provide different levels of accuracy, scalability, versatility, extensibility, and usability. The SimGrid framework has been used by many PDC researchers to produce a wide range of simulators for over two decades. Its popularity is due to a large emphasis placed on accuracy, scalability, and versatility, and is in spite of shortcomings in terms of extensibility and usability. Although SimGrid provides sensible simulation models for the common case, it was difficult for users to extend these models to meet domain-specific needs. Furthermore, SimGrid only provided relatively low-level simulation abstractions, making the implementation of a simulator of a complex system a labor-intensive undertaking. In this work we describe developments in the last decade that have contributed to vastly improving extensibility and usability, thus lowering or removing entry barriers for users to develop custom SimGrid simulators.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"123 ","pages":"Article 103125"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819125000018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers in parallel and distributed computing (PDC) often resort to simulation because experiments conducted using a simulator can be for arbitrary experimental scenarios, are less resource-, labor-, and time-consuming than their real-world counterparts, and are perfectly repeatable and observable. Many frameworks have been developed to ease the development of PDC simulators, and these frameworks provide different levels of accuracy, scalability, versatility, extensibility, and usability. The SimGrid framework has been used by many PDC researchers to produce a wide range of simulators for over two decades. Its popularity is due to a large emphasis placed on accuracy, scalability, and versatility, and is in spite of shortcomings in terms of extensibility and usability. Although SimGrid provides sensible simulation models for the common case, it was difficult for users to extend these models to meet domain-specific needs. Furthermore, SimGrid only provided relatively low-level simulation abstractions, making the implementation of a simulator of a complex system a labor-intensive undertaking. In this work we describe developments in the last decade that have contributed to vastly improving extensibility and usability, thus lowering or removing entry barriers for users to develop custom SimGrid simulators.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications