Jaroslav Olha, Jana Hozzová, Matej Antol, Jiří Filipovič
{"title":"Estimating resource budgets to ensure autotuning efficiency","authors":"Jaroslav Olha, Jana Hozzová, Matej Antol, Jiří Filipovič","doi":"10.1016/j.parco.2025.103126","DOIUrl":null,"url":null,"abstract":"<div><div>Many state-of-the-art HPC applications rely on autotuning to maintain peak performance. Autotuning allows a program to be re-optimized for new hardware, settings, or input — even during execution. However, the approach has an inherent problem that has yet to be properly addressed: since the autotuning process itself requires computational resources, it is also subject to optimization. In other words, while autotuning aims to decrease a program’s run time by improving its efficiency, it also introduces additional overhead that can extend the overall run time. To achieve optimal performance, both the application and the autotuning process should be optimized together, treating them as a single optimization criterion. This framing allows us to determine a reasonable tuning budget to avoid both undertuning, where insufficient autotuning leads to suboptimal performance, and overtuning, where excessive autotuning imposes overhead that outweighs the benefits of program optimization.</div><div>In this paper, we explore the tuning budget optimization problem in detail, highlighting its interesting properties and implications, which have largely been overlooked in the literature. Additionally, we present several viable solutions for tuning budget optimization and evaluate their efficiency across a range of commonly used HPC kernels.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"123 ","pages":"Article 103126"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016781912500002X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Many state-of-the-art HPC applications rely on autotuning to maintain peak performance. Autotuning allows a program to be re-optimized for new hardware, settings, or input — even during execution. However, the approach has an inherent problem that has yet to be properly addressed: since the autotuning process itself requires computational resources, it is also subject to optimization. In other words, while autotuning aims to decrease a program’s run time by improving its efficiency, it also introduces additional overhead that can extend the overall run time. To achieve optimal performance, both the application and the autotuning process should be optimized together, treating them as a single optimization criterion. This framing allows us to determine a reasonable tuning budget to avoid both undertuning, where insufficient autotuning leads to suboptimal performance, and overtuning, where excessive autotuning imposes overhead that outweighs the benefits of program optimization.
In this paper, we explore the tuning budget optimization problem in detail, highlighting its interesting properties and implications, which have largely been overlooked in the literature. Additionally, we present several viable solutions for tuning budget optimization and evaluate their efficiency across a range of commonly used HPC kernels.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications