Estimating resource budgets to ensure autotuning efficiency

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2025-02-10 DOI:10.1016/j.parco.2025.103126
Jaroslav Olha, Jana Hozzová, Matej Antol, Jiří Filipovič
{"title":"Estimating resource budgets to ensure autotuning efficiency","authors":"Jaroslav Olha,&nbsp;Jana Hozzová,&nbsp;Matej Antol,&nbsp;Jiří Filipovič","doi":"10.1016/j.parco.2025.103126","DOIUrl":null,"url":null,"abstract":"<div><div>Many state-of-the-art HPC applications rely on autotuning to maintain peak performance. Autotuning allows a program to be re-optimized for new hardware, settings, or input — even during execution. However, the approach has an inherent problem that has yet to be properly addressed: since the autotuning process itself requires computational resources, it is also subject to optimization. In other words, while autotuning aims to decrease a program’s run time by improving its efficiency, it also introduces additional overhead that can extend the overall run time. To achieve optimal performance, both the application and the autotuning process should be optimized together, treating them as a single optimization criterion. This framing allows us to determine a reasonable tuning budget to avoid both undertuning, where insufficient autotuning leads to suboptimal performance, and overtuning, where excessive autotuning imposes overhead that outweighs the benefits of program optimization.</div><div>In this paper, we explore the tuning budget optimization problem in detail, highlighting its interesting properties and implications, which have largely been overlooked in the literature. Additionally, we present several viable solutions for tuning budget optimization and evaluate their efficiency across a range of commonly used HPC kernels.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"123 ","pages":"Article 103126"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016781912500002X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Many state-of-the-art HPC applications rely on autotuning to maintain peak performance. Autotuning allows a program to be re-optimized for new hardware, settings, or input — even during execution. However, the approach has an inherent problem that has yet to be properly addressed: since the autotuning process itself requires computational resources, it is also subject to optimization. In other words, while autotuning aims to decrease a program’s run time by improving its efficiency, it also introduces additional overhead that can extend the overall run time. To achieve optimal performance, both the application and the autotuning process should be optimized together, treating them as a single optimization criterion. This framing allows us to determine a reasonable tuning budget to avoid both undertuning, where insufficient autotuning leads to suboptimal performance, and overtuning, where excessive autotuning imposes overhead that outweighs the benefits of program optimization.
In this paper, we explore the tuning budget optimization problem in detail, highlighting its interesting properties and implications, which have largely been overlooked in the literature. Additionally, we present several viable solutions for tuning budget optimization and evaluate their efficiency across a range of commonly used HPC kernels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Estimating resource budgets to ensure autotuning efficiency Lowering entry barriers to developing custom simulators of distributed applications and platforms with SimGrid Scalable tasking runtime with parallelized builders for explicit message passing architectures Iterative methods in GPU-resident linear solvers for nonlinear constrained optimization Towards resilient and energy efficient scalable Krylov solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1