{"title":"Two-point diameter calibration of a sphere by a micro-coordinate measuring machine using a silicon gauge block as a reference standard","authors":"Yohan Kondo , Akiko Hirai , Toshiharu Katsube , Natsumi Kawashima , Youichi Bitou","doi":"10.1016/j.precisioneng.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>The National Metrology Institute of Japan (NMIJ) developed an accurate two-point diameter measurement system for a sphere by using a micro-coordinate measuring machine (μ-CMM) with a gauge block for calibrating the radius of the μ-CMM probe. The surface roughness of end faces of the gauge block is a key uncertainty factor and, to reduce this in calibrating the μ-CMM probe, a newly fabricated silicon gauge block with a polished surface roughness of a few nanometers or less was used. To overcome poor repeatability caused by interaction forces acting on the probe, we developed a μ-CMM probe with T-shaped sharp styli and an 8-μm tip radius, which minimized the contact area between the stylus tip and gauge block. A calibrated μ-CMM probe (expanded uncertainty of 7.4 nm; <em>k</em> = 2) equipped with the newly developed T-shaped sharp styli was used to measure the mean two-point diameter of a sphere with an expanded uncertainty of 15 nm (<em>k</em> = 2).</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"92 ","pages":"Pages 167-178"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002678","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The National Metrology Institute of Japan (NMIJ) developed an accurate two-point diameter measurement system for a sphere by using a micro-coordinate measuring machine (μ-CMM) with a gauge block for calibrating the radius of the μ-CMM probe. The surface roughness of end faces of the gauge block is a key uncertainty factor and, to reduce this in calibrating the μ-CMM probe, a newly fabricated silicon gauge block with a polished surface roughness of a few nanometers or less was used. To overcome poor repeatability caused by interaction forces acting on the probe, we developed a μ-CMM probe with T-shaped sharp styli and an 8-μm tip radius, which minimized the contact area between the stylus tip and gauge block. A calibrated μ-CMM probe (expanded uncertainty of 7.4 nm; k = 2) equipped with the newly developed T-shaped sharp styli was used to measure the mean two-point diameter of a sphere with an expanded uncertainty of 15 nm (k = 2).
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.