L’identification des aménagements funéraires du Fadnoun dans le Sahara central en Algérie par l’utilisation de l’apprentissage profond et les outils de la géomatique

IF 0.6 4区 地球科学 Q3 ANTHROPOLOGY Anthropologie Pub Date : 2025-01-01 DOI:10.1016/j.anthro.2024.103333
Saida Meftah, Nadhira Attalah
{"title":"L’identification des aménagements funéraires du Fadnoun dans le Sahara central en Algérie par l’utilisation de l’apprentissage profond et les outils de la géomatique","authors":"Saida Meftah,&nbsp;Nadhira Attalah","doi":"10.1016/j.anthro.2024.103333","DOIUrl":null,"url":null,"abstract":"<div><div>The research on funerary arrangements in the Fadnoun region, located in the heart of the Central Sahara, aims to explore and document prehistorical burial sites that are often inaccessible due to the extreme conditions of the desert. By utilizing modern technologies such as satellite imagery and remote sensing, this initiative seeks to shed light on ancient funerary structures and deepen our understanding of burial practices in this region. This study aims to enhance knowledge about the funerary arrangements of the Tassili of Fadnoun by employing convolutional neural networks to detect archaeological mounds shaped like keyholes. The objectives include locating and analyzing ancient funerary structures through high-resolution satellite images, developing a neural network model to recognize and classify these mounds, and contributing to the good documentation of cultural heritage by providing accurate data on burial sites. Preliminary results show that the use of convolutional neural networks has enabled the identification of new archaeological mounds in the Fadnoun region, revealing unprecedented funerary practices. The integration of remote sensing with traditional methods has proven effective in locating hard-to-access sites, thereby enhancing the good documentation of cultural heritage. This research aims to improve our understanding of the civilizations of the central Sahara and better document cultural heritage by using convolutional neural networks to detect archaeological mounds. The results demonstrate increased efficiency in identifying these sites through the analysis of high-resolution satellite images.</div></div>","PeriodicalId":46860,"journal":{"name":"Anthropologie","volume":"129 1","pages":"Article 103333"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropologie","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003552124001237","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The research on funerary arrangements in the Fadnoun region, located in the heart of the Central Sahara, aims to explore and document prehistorical burial sites that are often inaccessible due to the extreme conditions of the desert. By utilizing modern technologies such as satellite imagery and remote sensing, this initiative seeks to shed light on ancient funerary structures and deepen our understanding of burial practices in this region. This study aims to enhance knowledge about the funerary arrangements of the Tassili of Fadnoun by employing convolutional neural networks to detect archaeological mounds shaped like keyholes. The objectives include locating and analyzing ancient funerary structures through high-resolution satellite images, developing a neural network model to recognize and classify these mounds, and contributing to the good documentation of cultural heritage by providing accurate data on burial sites. Preliminary results show that the use of convolutional neural networks has enabled the identification of new archaeological mounds in the Fadnoun region, revealing unprecedented funerary practices. The integration of remote sensing with traditional methods has proven effective in locating hard-to-access sites, thereby enhancing the good documentation of cultural heritage. This research aims to improve our understanding of the civilizations of the central Sahara and better document cultural heritage by using convolutional neural networks to detect archaeological mounds. The results demonstrate increased efficiency in identifying these sites through the analysis of high-resolution satellite images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Anthropologie
Anthropologie ANTHROPOLOGY-
CiteScore
1.00
自引率
0.00%
发文量
59
期刊介绍: First published in 1890, Anthropologie remains one of the most important journals devoted to prehistoric sciences and paleoanthropology. It regularly publishes thematic issues, originalsarticles and book reviews.
期刊最新文献
Editorial board L’identification des aménagements funéraires du Fadnoun dans le Sahara central en Algérie par l’utilisation de l’apprentissage profond et les outils de la géomatique L’iconographie anthropomorphe dans l’art rupestre et pariétal d’Eurasie à l’Holocène : un panorama ordonné Roches gravées et dalles façonnées dans la partie Occidentale du Massif des Maures Geospatial context of the Ukshi geoglyph in the Konkan zone of Maharashtra, western India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1