Solar forcing as driver for late Holocene rainfall intensity in the Peruvian Andes

IF 1.9 3区 地球科学 Q3 GEOGRAPHY, PHYSICAL Quaternary International Pub Date : 2025-02-01 DOI:10.1016/j.quaint.2024.109647
Karsten Schittek , Jan Wowrek , Nicolas Käuffer , Markus Reindel , Bertil Mächtle
{"title":"Solar forcing as driver for late Holocene rainfall intensity in the Peruvian Andes","authors":"Karsten Schittek ,&nbsp;Jan Wowrek ,&nbsp;Nicolas Käuffer ,&nbsp;Markus Reindel ,&nbsp;Bertil Mächtle","doi":"10.1016/j.quaint.2024.109647","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a high-resolution palaeoclimate record from sediment cores collected from the siltation area of Laguna Comercocha (LC) in southern Peru, spanning the last 1070 cal years. The primary objective was to investigate climatic variations and environmental changes before, during and after the Little Ice Age (LIA) in the central Andes, with particular emphasis on precipitation patterns and their relation to solar forcing. The extracted core provided a continuous sedimentary archive, offering insights into climate variability on sub-centennial to inter-decadal timescales. The methodology included analysing the sediment cores using X-ray fluorescence (XRF) to measure the concentrations of allogenic elements such as titanium (Ti), silicon (Si), potassium (K), iron (Fe) and calcium (Ca). Ti/coh ratios served as proxy for effective rainfall and runoff from the local catchment. In addition, pollen and non-pollen palynomorphs (NPPs) were identified and quantified to reconstruct past vegetation and climatic conditions. The study revealed that lithogenic input to the LC increased significantly after 1150 cal yr AD, likely due to increased precipitation. In particular, periods of increased lithogenic input were identified during the LIA, corresponding to solar minima and pointing to solar forcing as a major driver of precipitation changes in the central Andes.</div></div>","PeriodicalId":49644,"journal":{"name":"Quaternary International","volume":"718 ","pages":"Article 109647"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary International","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104061822400466X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a high-resolution palaeoclimate record from sediment cores collected from the siltation area of Laguna Comercocha (LC) in southern Peru, spanning the last 1070 cal years. The primary objective was to investigate climatic variations and environmental changes before, during and after the Little Ice Age (LIA) in the central Andes, with particular emphasis on precipitation patterns and their relation to solar forcing. The extracted core provided a continuous sedimentary archive, offering insights into climate variability on sub-centennial to inter-decadal timescales. The methodology included analysing the sediment cores using X-ray fluorescence (XRF) to measure the concentrations of allogenic elements such as titanium (Ti), silicon (Si), potassium (K), iron (Fe) and calcium (Ca). Ti/coh ratios served as proxy for effective rainfall and runoff from the local catchment. In addition, pollen and non-pollen palynomorphs (NPPs) were identified and quantified to reconstruct past vegetation and climatic conditions. The study revealed that lithogenic input to the LC increased significantly after 1150 cal yr AD, likely due to increased precipitation. In particular, periods of increased lithogenic input were identified during the LIA, corresponding to solar minima and pointing to solar forcing as a major driver of precipitation changes in the central Andes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quaternary International
Quaternary International 地学-地球科学综合
CiteScore
5.60
自引率
4.50%
发文量
336
审稿时长
3 months
期刊介绍: Quaternary International is the official journal of the International Union for Quaternary Research. The objectives are to publish a high quality scientific journal under the auspices of the premier Quaternary association that reflects the interdisciplinary nature of INQUA and records recent advances in Quaternary science that appeal to a wide audience. This series will encompass all the full spectrum of the physical and natural sciences that are commonly employed in solving Quaternary problems. The policy is to publish peer refereed collected research papers from symposia, workshops and meetings sponsored by INQUA. In addition, other organizations may request publication of their collected works pertaining to the Quaternary.
期刊最新文献
The large lithic assemblage of Gombore I, level B (Melka Kunture, Ethiopia) and the early Acheulean technology in East Africa Isotopic insights into mammalian diets and local vegetation cover during the Oldowan-Acheulean transition at Garba IV and Gombore I (Melka Kunture, Upper Awash Valley, Ethiopia) Editorial Board Wood utilization and paleo-vegetation revealed by wooden remains excavated from ancient Dahe City site (AD 618–907) in Barkol, Xinjiang, northwest China The volcanic rock spheres of Melka Kunture (Upper Awash, Ethiopia) at Gombore IB and later Acheulean sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1