Jiawei Wang , Haiming Cai , Lijun Sun , Binliang Li , Jian Wang
{"title":"MERCI: Multi-agent reinforcement learning for enhancing on-demand Electric taxi operation in terms of Rebalancing, Charging, and Informing Orders","authors":"Jiawei Wang , Haiming Cai , Lijun Sun , Binliang Li , Jian Wang","doi":"10.1016/j.cie.2024.110711","DOIUrl":null,"url":null,"abstract":"<div><div>The development of intelligent transportation systems is being driven by the increasing electrification and the Internet of Things. On-demand electric taxis (OETs) are seen as a potential way to meet personalized travel needs and improve transport efficiency. While research is being done to create a multi-agent reinforcement learning (MARL)-based framework to achieve intelligent operation, there are still challenges to be addressed, such as the balance between exploration and exploitation, and the non-stationary issue. This study proposes an ensemble MARL framework to manage the daily operations of OETs, such as rebalancing, charging and informing orders. To address the non-stationary issue caused by the dynamic nature of operations, a demand awareness augmented architecture is proposed to use order information to make better decisions. Experiments using real-world data in Shenzhen show the emergence of intelligence of the proposed framework during operation and its superiority over traditional greedy methods. Additionally, ablation studies demonstrate that the proposed framework outperforms basic MARL architectures.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"200 ","pages":"Article 110711"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224008337","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of intelligent transportation systems is being driven by the increasing electrification and the Internet of Things. On-demand electric taxis (OETs) are seen as a potential way to meet personalized travel needs and improve transport efficiency. While research is being done to create a multi-agent reinforcement learning (MARL)-based framework to achieve intelligent operation, there are still challenges to be addressed, such as the balance between exploration and exploitation, and the non-stationary issue. This study proposes an ensemble MARL framework to manage the daily operations of OETs, such as rebalancing, charging and informing orders. To address the non-stationary issue caused by the dynamic nature of operations, a demand awareness augmented architecture is proposed to use order information to make better decisions. Experiments using real-world data in Shenzhen show the emergence of intelligence of the proposed framework during operation and its superiority over traditional greedy methods. Additionally, ablation studies demonstrate that the proposed framework outperforms basic MARL architectures.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.