Silvestro Vespoli, Giulio Mattera, Maria Grazia Marchesano, Luigi Nele, Guido Guizzi
{"title":"Adaptive manufacturing control with Deep Reinforcement Learning for dynamic WIP management in industry 4.0","authors":"Silvestro Vespoli, Giulio Mattera, Maria Grazia Marchesano, Luigi Nele, Guido Guizzi","doi":"10.1016/j.cie.2025.110966","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of Industry 4.0, manufacturing systems face increased complexity and uncertainty due to elevated product customisation and demand variability. This paper presents a novel framework for adaptive Work-In-Progress (WIP) control in semi-heterarchical architectures, addressing the limitations of traditional analytical methods that rely on exponential processing time distributions. Integrating Deep Reinforcement Learning (DRL) with Discrete Event Simulation (DES) enables model-free control of flow-shop production systems under non-exponential, stochastic processing times. A Deep Q-Network (DQN) agent dynamically manages WIP levels in a CONstant Work In Progress (CONWIP) environment, learning optimal control policies directly from system interactions. The framework’s effectiveness is demonstrated through extensive experiments with varying machine numbers, processing times, and system variability. The results show robust performance in tracking the target throughput and adapting the processing time variability, achieving Mean Absolute Percentual Errors (MAPE) in the throughput – calculated as the percentage difference between the actual and the target throughput – ranging from 0.3% to 2.3% with standard deviations of 5. 5% to 8. 4%. Key contributions include the development of a data-driven WIP control approach to overcome analytical methods’ limitations in stochastic environments, validating DQN agent adaptability across varying production scenarios, and demonstrating framework scalability in realistic manufacturing settings. This research bridges the gap between conventional WIP control methods and Industry 4.0 requirements, offering manufacturers an adaptive solution for enhanced production efficiency.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"202 ","pages":"Article 110966"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225001123","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of Industry 4.0, manufacturing systems face increased complexity and uncertainty due to elevated product customisation and demand variability. This paper presents a novel framework for adaptive Work-In-Progress (WIP) control in semi-heterarchical architectures, addressing the limitations of traditional analytical methods that rely on exponential processing time distributions. Integrating Deep Reinforcement Learning (DRL) with Discrete Event Simulation (DES) enables model-free control of flow-shop production systems under non-exponential, stochastic processing times. A Deep Q-Network (DQN) agent dynamically manages WIP levels in a CONstant Work In Progress (CONWIP) environment, learning optimal control policies directly from system interactions. The framework’s effectiveness is demonstrated through extensive experiments with varying machine numbers, processing times, and system variability. The results show robust performance in tracking the target throughput and adapting the processing time variability, achieving Mean Absolute Percentual Errors (MAPE) in the throughput – calculated as the percentage difference between the actual and the target throughput – ranging from 0.3% to 2.3% with standard deviations of 5. 5% to 8. 4%. Key contributions include the development of a data-driven WIP control approach to overcome analytical methods’ limitations in stochastic environments, validating DQN agent adaptability across varying production scenarios, and demonstrating framework scalability in realistic manufacturing settings. This research bridges the gap between conventional WIP control methods and Industry 4.0 requirements, offering manufacturers an adaptive solution for enhanced production efficiency.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.