Data-driven multi-location inventory placement in digital commerce

IF 6.7 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Industrial Engineering Pub Date : 2025-02-01 DOI:10.1016/j.cie.2024.110842
Yihua Wang , Stefan Minner
{"title":"Data-driven multi-location inventory placement in digital commerce","authors":"Yihua Wang ,&nbsp;Stefan Minner","doi":"10.1016/j.cie.2024.110842","DOIUrl":null,"url":null,"abstract":"<div><div>Digital commerce has become an indispensable part of global retail. Digital commerce retailers usually build large logistics networks with multiple distribution centers (DCs) to serve widespread consumers. In this paper, we study multi-location inventory placement for online retailers to fulfill customer demands. Specifically, we consider three decision-making problems: (i) in which DCs to place inventory, (ii) how to set base-stock levels for inventory-holding DCs, and (iii) from which DCs to fulfill customer demand. The main challenge is to achieve the optimal trade-off between inventory cost savings from inventory pooling and the increased demand fulfillment cost associated with placing inventory far from consumers. To investigate the trade-off, we propose a data-driven stochastic program under two different demand fulfillment policies, namely fixed and virtual pooling. We evaluate the effectiveness of the proposed method through a case study based on a real-world data set by a logistics company. The proposed method achieves an average cost reduction of 19.2% compared to the company’s current inventory placement policy. Further, we conduct ABC-XYZ analysis for more than 7,700 stock keeping units (SKUs) in the data set. The comparison of inventory placement decisions between different SKU categories suggests that digital commerce retailers should place more inventory in local DCs for SKUs with steadily high demand rates and pool more inventory at central DCs for SKUs with low demand rates and high variance. Additionally, we perform a systematic sensitivity analysis with controllable problem parameter configurations to investigate the impact of different parameters on inventory placement decisions.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"200 ","pages":"Article 110842"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224009641","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Digital commerce has become an indispensable part of global retail. Digital commerce retailers usually build large logistics networks with multiple distribution centers (DCs) to serve widespread consumers. In this paper, we study multi-location inventory placement for online retailers to fulfill customer demands. Specifically, we consider three decision-making problems: (i) in which DCs to place inventory, (ii) how to set base-stock levels for inventory-holding DCs, and (iii) from which DCs to fulfill customer demand. The main challenge is to achieve the optimal trade-off between inventory cost savings from inventory pooling and the increased demand fulfillment cost associated with placing inventory far from consumers. To investigate the trade-off, we propose a data-driven stochastic program under two different demand fulfillment policies, namely fixed and virtual pooling. We evaluate the effectiveness of the proposed method through a case study based on a real-world data set by a logistics company. The proposed method achieves an average cost reduction of 19.2% compared to the company’s current inventory placement policy. Further, we conduct ABC-XYZ analysis for more than 7,700 stock keeping units (SKUs) in the data set. The comparison of inventory placement decisions between different SKU categories suggests that digital commerce retailers should place more inventory in local DCs for SKUs with steadily high demand rates and pool more inventory at central DCs for SKUs with low demand rates and high variance. Additionally, we perform a systematic sensitivity analysis with controllable problem parameter configurations to investigate the impact of different parameters on inventory placement decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字商务中数据驱动的多地点库存布局
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
期刊最新文献
Adaptive manufacturing control with Deep Reinforcement Learning for dynamic WIP management in industry 4.0 A deep learning method for assessment of ecological potential in traffic environments Dynamic reliability evaluation of multi-performance sharing and multi-state systems with interdependence AS-IS representation and strategic framework for the design and implementation of a disassembly system A real-time A* algorithm for trajectories generation and collision avoidance in uncertain environments for assembly applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1