Dual-functional passivation on highly-efficient air-processed FAPbI₃ perovskite solar cells fabricated under high humidity without auxiliary equipment

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2025-01-01 DOI:10.1016/j.apsadv.2024.100683
Bo-Tau Liu , His-Sheng Su , I-Ru Chen , Rong-Ho Lee , Yi-Fang Su , Kai-Ting Sun , Shoaib Siddique
{"title":"Dual-functional passivation on highly-efficient air-processed FAPbI₃ perovskite solar cells fabricated under high humidity without auxiliary equipment","authors":"Bo-Tau Liu ,&nbsp;His-Sheng Su ,&nbsp;I-Ru Chen ,&nbsp;Rong-Ho Lee ,&nbsp;Yi-Fang Su ,&nbsp;Kai-Ting Sun ,&nbsp;Shoaib Siddique","doi":"10.1016/j.apsadv.2024.100683","DOIUrl":null,"url":null,"abstract":"<div><div>Formamidinium lead triiodide (FAPbI<sub>3</sub>) perovskite has garnered significant attention due to its narrow bandgap and excellent thermal stability. However, the photo-active <em>α</em>-phase FAPbI<sub>3</sub> suffers the poor structural stability, easily transforming to photo-inactive <em>δ</em>-phase FAPbI<sub>3</sub> at room temperature, a process that is accelerated by the moisture. While numerous methods have been proposed to address this issue, most efforts have relied on glove-box conditions, substrate heating, or air-knife flow. To date, few studies have reported a strategy for fabricating highly efficient FAPbI<sub>3</sub> perovskite solar cells (PSCs) under humid conditions. In this study, we are the first to demonstrate the fabrication of FAPbI<sub>3</sub> PSCs using a one-step solution deposition method in a relative humidity of 70 % without the need for auxiliary processes or equipment, achieved through the addition of a highly volatile solvent and the incorporation of methacrylic acid (MAA) into the perovskite layer. The addition of the volatile solvent enables the fabrication of FAPbI<sub>3</sub> perovskite in a high-moisture environment without adversely affecting the phase transformation process. The MAA incorporation not only decreases pinholes in the perovskite layer but also passivates the deep-level defects through the interaction of carboxyl groups with formamidinium cations, resulting in a low trap-state density, high charge recombination resistance, and long charge lifetime. The thermal treatment used for phase transformation of the perovskite also induces the polymerization of MAA, which further improves the long-term stability of PSCs. This dual-functional passivation approach enables PSCs to achieve high power conversion efficiency, surpassing many previously reported values for PSCs fabricated without additional processes or specialized equipment, even under highly humid conditions.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100683"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924001119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Formamidinium lead triiodide (FAPbI3) perovskite has garnered significant attention due to its narrow bandgap and excellent thermal stability. However, the photo-active α-phase FAPbI3 suffers the poor structural stability, easily transforming to photo-inactive δ-phase FAPbI3 at room temperature, a process that is accelerated by the moisture. While numerous methods have been proposed to address this issue, most efforts have relied on glove-box conditions, substrate heating, or air-knife flow. To date, few studies have reported a strategy for fabricating highly efficient FAPbI3 perovskite solar cells (PSCs) under humid conditions. In this study, we are the first to demonstrate the fabrication of FAPbI3 PSCs using a one-step solution deposition method in a relative humidity of 70 % without the need for auxiliary processes or equipment, achieved through the addition of a highly volatile solvent and the incorporation of methacrylic acid (MAA) into the perovskite layer. The addition of the volatile solvent enables the fabrication of FAPbI3 perovskite in a high-moisture environment without adversely affecting the phase transformation process. The MAA incorporation not only decreases pinholes in the perovskite layer but also passivates the deep-level defects through the interaction of carboxyl groups with formamidinium cations, resulting in a low trap-state density, high charge recombination resistance, and long charge lifetime. The thermal treatment used for phase transformation of the perovskite also induces the polymerization of MAA, which further improves the long-term stability of PSCs. This dual-functional passivation approach enables PSCs to achieve high power conversion efficiency, surpassing many previously reported values for PSCs fabricated without additional processes or specialized equipment, even under highly humid conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Structural features of graphene and silver functionalized graphene oxide loaded with perfluorinated compounds during thermal heating Localized creation of bubble domains in Fe3GaTe2 by conductive atomic force microscopy Influence of pretreatments on the surface charge of anode and cathode materials in spent lithium-ion batteries - a key point for recycling Prussian blue nanocubes growth by electrochemical deposition on sulfur-doped graphene as nanozyme: Optimization and application in the field of environmental sensors Morphology-dependent near-infrared photothermal activity of plasmonic TiN nanobars and nanospheres for anticancer, antibacterial therapy and deep in vivo photoacoustic imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1