Platycodin D inhibits tumor proliferation by modulating macrophage polarization through promoting JAK2 ubiquitination

IF 3.8 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Journal of Functional Foods Pub Date : 2025-02-01 DOI:10.1016/j.jff.2025.106671
Wei Wu , Jie Zhang , Zijiao Wang , Chuan Cheng , Dongdong Yuan , Li Peng , Le Li
{"title":"Platycodin D inhibits tumor proliferation by modulating macrophage polarization through promoting JAK2 ubiquitination","authors":"Wei Wu ,&nbsp;Jie Zhang ,&nbsp;Zijiao Wang ,&nbsp;Chuan Cheng ,&nbsp;Dongdong Yuan ,&nbsp;Li Peng ,&nbsp;Le Li","doi":"10.1016/j.jff.2025.106671","DOIUrl":null,"url":null,"abstract":"<div><div>A growing body of evidence indicates that tumor-associated macrophages (TAMs) are crucial contributors to cancer progression, positioning them as an attractive target for therapeutic intervention. In our previous studies, we found that <em>Platycodon grandiflorum</em> exert anti-melanoma effects by influencing TAMs. Platycodin D (PD), a bioactive compound derived from the dried roots of <em>Platycodon grandiflorum</em>, possesses anti-inflammatory, immunomodulatory, and anti-tumor properties. Based on this, we hypothesized that PD could have anti-melanoma potential and set out to investigate its molecular mechanisms in relation to TAMs. Treatment with PD led to a significant reduction in melanoma tumor weight, inhibition of the mTOR pathway, and suppression of M2-polarized macrophages. PD also downregulated M2 macrophage markers, impaired mitochondrial function, reduced ROS production, and diminished the tumor-promoting functions of TAMs. Through network pharmacology and experimental validation, STAT3 was identified as a central target. PD was shown to decrease JAK2 and p-STAT3 levels, promote JAK2 degradation, and enhance its ubiquitination. In Lyz2<sup>cre/cre</sup> JAK2<sup>flox/flox</sup> mice, which lack JAK2 specifically in bone marrow-derived macrophages (BMDMs) were resistant to PD's effects on M2 polarization, mitochondrial function, and melanoma suppression. In summary, PD inhibits melanoma growth by targeting JAK2, which in turn influences M2 polarization and mitochondrial function. This study underscores the potential of PD in regulating TAMs, providing new insights into its potential use in cancer therapy.</div></div>","PeriodicalId":360,"journal":{"name":"Journal of Functional Foods","volume":"125 ","pages":"Article 106671"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Foods","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1756464625000131","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A growing body of evidence indicates that tumor-associated macrophages (TAMs) are crucial contributors to cancer progression, positioning them as an attractive target for therapeutic intervention. In our previous studies, we found that Platycodon grandiflorum exert anti-melanoma effects by influencing TAMs. Platycodin D (PD), a bioactive compound derived from the dried roots of Platycodon grandiflorum, possesses anti-inflammatory, immunomodulatory, and anti-tumor properties. Based on this, we hypothesized that PD could have anti-melanoma potential and set out to investigate its molecular mechanisms in relation to TAMs. Treatment with PD led to a significant reduction in melanoma tumor weight, inhibition of the mTOR pathway, and suppression of M2-polarized macrophages. PD also downregulated M2 macrophage markers, impaired mitochondrial function, reduced ROS production, and diminished the tumor-promoting functions of TAMs. Through network pharmacology and experimental validation, STAT3 was identified as a central target. PD was shown to decrease JAK2 and p-STAT3 levels, promote JAK2 degradation, and enhance its ubiquitination. In Lyz2cre/cre JAK2flox/flox mice, which lack JAK2 specifically in bone marrow-derived macrophages (BMDMs) were resistant to PD's effects on M2 polarization, mitochondrial function, and melanoma suppression. In summary, PD inhibits melanoma growth by targeting JAK2, which in turn influences M2 polarization and mitochondrial function. This study underscores the potential of PD in regulating TAMs, providing new insights into its potential use in cancer therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Foods
Journal of Functional Foods FOOD SCIENCE & TECHNOLOGY-
CiteScore
9.60
自引率
1.80%
发文量
428
审稿时长
76 days
期刊介绍: Journal of Functional Foods continues with the same aims and scope, editorial team, submission system and rigorous peer review. We give authors the possibility to publish their top-quality papers in a well-established leading journal in the food and nutrition fields. The Journal will keep its rigorous criteria to screen high impact research addressing relevant scientific topics and performed by sound methodologies. The Journal of Functional Foods aims to bring together the results of fundamental and applied research into healthy foods and biologically active food ingredients. The Journal is centered in the specific area at the boundaries among food technology, nutrition and health welcoming papers having a good interdisciplinary approach. The Journal will cover the fields of plant bioactives; dietary fibre, probiotics; functional lipids; bioactive peptides; vitamins, minerals and botanicals and other dietary supplements. Nutritional and technological aspects related to the development of functional foods and beverages are of core interest to the journal. Experimental works dealing with food digestion, bioavailability of food bioactives and on the mechanisms by which foods and their components are able to modulate physiological parameters connected with disease prevention are of particular interest as well as those dealing with personalized nutrition and nutritional needs in pathological subjects.
期刊最新文献
Ginkgolide B promotes fat-lowering and lifespan in Caenorhabditis elegans via DAF-2/DAF-16 signaling pathway Amentoflavone ameliorates DSS-induced ulcerative colitis via gut microbiota-bile acid metabolism axis modulation Mixed fruits and berries counteract the detrimental effects caused by the obesogenic cafeteria /western diet in adolescent rat model of obesity Ethanol extract of Lactobacillus rhamnosus AC1-fermented soymilk alleviated DSS-induced colitis via LPS-TLR4-NF-κB signaling pathway The polysaccharides from Hemerocallis citrina Baroni alleviate cognitive impairment in high-fat diet/streptozocin-induced type 2 diabetic mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1