Recovery of deformation surface of superelastic and shape memory NiTi alloy

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2025-01-01 DOI:10.1016/j.apsadv.2024.100684
Sneha Samal , Jan Tomáštík , Lukáš Václavek , Mohit Chandra , Jaromír Kopeček , Ivo Stachiv , Petr Šittner
{"title":"Recovery of deformation surface of superelastic and shape memory NiTi alloy","authors":"Sneha Samal ,&nbsp;Jan Tomáštík ,&nbsp;Lukáš Václavek ,&nbsp;Mohit Chandra ,&nbsp;Jaromír Kopeček ,&nbsp;Ivo Stachiv ,&nbsp;Petr Šittner","doi":"10.1016/j.apsadv.2024.100684","DOIUrl":null,"url":null,"abstract":"<div><div>A series of indentation tests were carried out on superelastic (SE, Austenite) and shape memory alloy (SMA, Martensite) based NiTi alloys. Two types of indenters such as Berkovich and spherical indent radii of 5 and 10 µm were used in various indent loads on the surface of SE and SMA foils. Elastic and thermal surface recovery was estimated for the SE and SMA alloys at both indenters. SE sample shows the maximum recovery from deformation of 95 % at the load of 25–50 mN for the spherical indenter. However, SMA samples show a maximum recovery after heating on residual imprints of indent depth of 79 % at 250 mN load for spherical indenters. Elastic recovery in SE NiTi sample results from reverse phase transformation during unloading, however in SMA, this results from stress induced martensitic transformation. On thermal recovery SE shows recovery from shape memory region and martensite shows recovery from stress induced martensitic region. In multicycle tests, it was observed a first relative quick functional degradation of the material response, in terms of recovery capability, and a subsequent stabilization that typically occurs. Multicycle nanoindentation was performed for SE and SMA samples with a maximum load of 10 mN with a dwell time of 1s. SE shows elastic behaviour of the hysteresis curve that stabilizes after 10 cycles, however, SMA shows unrecovered strain with plasticity. On increment of the load up to 200 mN, the multicycle local indentation for SE represents the recovery of depth on each load, however overall, the unrecovered depth increases with load. However, in SMA, an increment of unrecovered depth was accumulated on each increased load.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100684"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924001120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of indentation tests were carried out on superelastic (SE, Austenite) and shape memory alloy (SMA, Martensite) based NiTi alloys. Two types of indenters such as Berkovich and spherical indent radii of 5 and 10 µm were used in various indent loads on the surface of SE and SMA foils. Elastic and thermal surface recovery was estimated for the SE and SMA alloys at both indenters. SE sample shows the maximum recovery from deformation of 95 % at the load of 25–50 mN for the spherical indenter. However, SMA samples show a maximum recovery after heating on residual imprints of indent depth of 79 % at 250 mN load for spherical indenters. Elastic recovery in SE NiTi sample results from reverse phase transformation during unloading, however in SMA, this results from stress induced martensitic transformation. On thermal recovery SE shows recovery from shape memory region and martensite shows recovery from stress induced martensitic region. In multicycle tests, it was observed a first relative quick functional degradation of the material response, in terms of recovery capability, and a subsequent stabilization that typically occurs. Multicycle nanoindentation was performed for SE and SMA samples with a maximum load of 10 mN with a dwell time of 1s. SE shows elastic behaviour of the hysteresis curve that stabilizes after 10 cycles, however, SMA shows unrecovered strain with plasticity. On increment of the load up to 200 mN, the multicycle local indentation for SE represents the recovery of depth on each load, however overall, the unrecovered depth increases with load. However, in SMA, an increment of unrecovered depth was accumulated on each increased load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Structural features of graphene and silver functionalized graphene oxide loaded with perfluorinated compounds during thermal heating Localized creation of bubble domains in Fe3GaTe2 by conductive atomic force microscopy Influence of pretreatments on the surface charge of anode and cathode materials in spent lithium-ion batteries - a key point for recycling Prussian blue nanocubes growth by electrochemical deposition on sulfur-doped graphene as nanozyme: Optimization and application in the field of environmental sensors Morphology-dependent near-infrared photothermal activity of plasmonic TiN nanobars and nanospheres for anticancer, antibacterial therapy and deep in vivo photoacoustic imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1