Ni/Ce0.8Zr0.2O2−x solid solution catalyst: a pathway to coke-resistant CO2 reforming of methane†

Rubina Khatun, Rohan Singh Pal, Kapil Bhati, Anil Chandra Kothari, Shivani Singh, Nazia Siddiqui, Swati Rana and Rajaram Bal
{"title":"Ni/Ce0.8Zr0.2O2−x solid solution catalyst: a pathway to coke-resistant CO2 reforming of methane†","authors":"Rubina Khatun, Rohan Singh Pal, Kapil Bhati, Anil Chandra Kothari, Shivani Singh, Nazia Siddiqui, Swati Rana and Rajaram Bal","doi":"10.1039/D4SU00481G","DOIUrl":null,"url":null,"abstract":"<p >The CO<small><sub>2</sub></small> reforming of methane effectively produces syngas using two prevalent greenhouse gases: CO<small><sub>2</sub></small> and CH<small><sub>4</sub></small>. This study investigates the performance of three nickel-based catalysts, Ni/ZrO<small><sub>2</sub></small>, Ni/CeO<small><sub>2</sub></small> and Ni/Ce<small><sub>0.8</sub></small>Zr<small><sub>0.2</sub></small>O<small><sub>2−<em>x</em></sub></small>, in the DRM reaction. Each catalyst was thoroughly examined using a range of techniques, including XRD, TPR, BET, TPD, HR-TEM, Raman, O<small><sub>2</sub></small>-TPD, XPS, TGA and CO<small><sub>2</sub></small>-TPD to assess its structural and catalytic properties. The Ni/Ce<small><sub>0.8</sub></small>Zr<small><sub>0.2</sub></small>O<small><sub>2−<em>x</em></sub></small> catalyst, combining the advantages of both supports to form a solid solution, achieved the best overall performance with enhanced activity and stability. Meanwhile, Ni/ZrO<small><sub>2</sub></small> and Ni/CeO<small><sub>2</sub></small> catalysts showed a tendency towards deactivation over extended reaction times. Characterization showed that incorporating zirconia into the CeO<small><sub>2</sub></small> lattice led to the solid solution synthesis with a solely defective cubic fluorite phase, as confirmed by XRD and Raman analysis. The TPR and CO<small><sub>2</sub></small>-TPD revealed that the resulting Ni/Ce<small><sub>0.8</sub></small>Zr<small><sub>0.2</sub></small>O<small><sub>2−<em>x</em></sub></small> catalyst possesses strong metal–support interaction and higher CO<small><sub>2</sub></small> adsorption compared to pure CeO<small><sub>2</sub></small> and ZrO<small><sub>2</sub></small> samples. This composite support facilitated the generation of oxygen vacancies/active oxygen species, which are beneficial for reducing coke deposition. The Ni/Ce<small><sub>0.8</sub></small>Zr<small><sub>0.2</sub></small>O<small><sub>2−<em>x</em></sub></small> catalyst demonstrated exceptional performance, achieving around 90.8% methane conversion and 91.0% CO<small><sub>2</sub></small> conversion at 700 °C, with the resulting H<small><sub>2</sub></small>/CO ratio precisely equal to one. The stability test revealed remarkable stability against coke deposition for Ni/Ce<small><sub>0.8</sub></small>Zr<small><sub>0.2</sub></small>O<small><sub>2−<em>x</em></sub></small>; meanwhile, Ni/ZrO<small><sub>2</sub></small> and Ni/CeO<small><sub>2</sub></small> are more susceptible to coke deposition, with the Ni/ZrO<small><sub>2</sub></small> sample showing a greater tendency towards graphitic coke deposition. This study highlights the importance of catalyst supports in optimizing the performance of nickel-based catalysts for CO<small><sub>2</sub></small> reforming applications.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 844-855"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00481g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00481g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The CO2 reforming of methane effectively produces syngas using two prevalent greenhouse gases: CO2 and CH4. This study investigates the performance of three nickel-based catalysts, Ni/ZrO2, Ni/CeO2 and Ni/Ce0.8Zr0.2O2−x, in the DRM reaction. Each catalyst was thoroughly examined using a range of techniques, including XRD, TPR, BET, TPD, HR-TEM, Raman, O2-TPD, XPS, TGA and CO2-TPD to assess its structural and catalytic properties. The Ni/Ce0.8Zr0.2O2−x catalyst, combining the advantages of both supports to form a solid solution, achieved the best overall performance with enhanced activity and stability. Meanwhile, Ni/ZrO2 and Ni/CeO2 catalysts showed a tendency towards deactivation over extended reaction times. Characterization showed that incorporating zirconia into the CeO2 lattice led to the solid solution synthesis with a solely defective cubic fluorite phase, as confirmed by XRD and Raman analysis. The TPR and CO2-TPD revealed that the resulting Ni/Ce0.8Zr0.2O2−x catalyst possesses strong metal–support interaction and higher CO2 adsorption compared to pure CeO2 and ZrO2 samples. This composite support facilitated the generation of oxygen vacancies/active oxygen species, which are beneficial for reducing coke deposition. The Ni/Ce0.8Zr0.2O2−x catalyst demonstrated exceptional performance, achieving around 90.8% methane conversion and 91.0% CO2 conversion at 700 °C, with the resulting H2/CO ratio precisely equal to one. The stability test revealed remarkable stability against coke deposition for Ni/Ce0.8Zr0.2O2−x; meanwhile, Ni/ZrO2 and Ni/CeO2 are more susceptible to coke deposition, with the Ni/ZrO2 sample showing a greater tendency towards graphitic coke deposition. This study highlights the importance of catalyst supports in optimizing the performance of nickel-based catalysts for CO2 reforming applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Afterglow quenching in plasma-based dry reforming of methane: a detailed analysis of the post-plasma chemistry via kinetic modelling. Showcasing the technological advancements of carbon dioxide conversion: a pathway to a sustainable future From lead–acid batteries to perovskite solar cells – efficient recycling of Pb-containing materials†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1