{"title":"Artificial Intelligence-Powered Materials Science","authors":"Xiaopeng Bai, Xingcai Zhang","doi":"10.1007/s40820-024-01634-8","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of materials has played a pivotal role in the advancement of human civilization, and the emergence of artificial intelligence (AI)-empowered materials science heralds a new era with substantial potential to tackle the escalating challenges related to energy, environment, and biomedical concerns in a sustainable manner. The exploration and development of sustainable materials are poised to assume a critical role in attaining technologically advanced solutions that are environmentally friendly, energy-efficient, and conducive to human well-being. This review provides a comprehensive overview of the current scholarly progress in artificial intelligence-powered materials science and its cutting-edge applications. We anticipate that AI technology will be extensively utilized in material research and development, thereby expediting the growth and implementation of novel materials. AI will serve as a catalyst for materials innovation, and in turn, advancements in materials innovation will further enhance the capabilities of AI and AI-powered materials science. Through the synergistic collaboration between AI and materials science, we stand to realize a future propelled by advanced AI-powered materials. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01634-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01634-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of materials has played a pivotal role in the advancement of human civilization, and the emergence of artificial intelligence (AI)-empowered materials science heralds a new era with substantial potential to tackle the escalating challenges related to energy, environment, and biomedical concerns in a sustainable manner. The exploration and development of sustainable materials are poised to assume a critical role in attaining technologically advanced solutions that are environmentally friendly, energy-efficient, and conducive to human well-being. This review provides a comprehensive overview of the current scholarly progress in artificial intelligence-powered materials science and its cutting-edge applications. We anticipate that AI technology will be extensively utilized in material research and development, thereby expediting the growth and implementation of novel materials. AI will serve as a catalyst for materials innovation, and in turn, advancements in materials innovation will further enhance the capabilities of AI and AI-powered materials science. Through the synergistic collaboration between AI and materials science, we stand to realize a future propelled by advanced AI-powered materials.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.