{"title":"Combinatorial Nonribosomal Peptide Synthetase Libraries Using the SEAM-Combi-OGAB Method.","authors":"Varada Jagadeesh, Nobuyuki Okahashi, Fumio Matsuda, Kenji Tsuge, Akihiko Kondo","doi":"10.1021/acssynbio.4c00671","DOIUrl":null,"url":null,"abstract":"<p><p>To overcome the difficulty of building large nonribosomal peptide synthetase (NRPS) gene cluster libraries, an efficient one-pot method using <i>Bacillus subtilis</i> was developed. This new method, named <u>S</u>eamed <u>E</u>xpress <u>A</u>ssembly <u>M</u>ethod (SEAM)-combi-<u>O</u>rdered <u>G</u>ene <u>A</u>ssembly in <i>Bacillus subtilis</i> (OGAB), combines the SEAM-OGAB approach for NRPS gene cluster construction with the combi-OGAB method for combinatorial DNA library construction to randomly swap DNA fragments for NRPS modules. In this study, NRPS gene clusters of plipastatin and gramicidin S were used as the starting material. The full length of each gene cluster was prepared as plasmid DNA by introducing restriction enzyme SfiI sites into the module border according to SEAM-OGAB. These two plasmids were mixed, digested with SfiI, ligated in a tandem repeat form, and used to transform <i>B. subtilis</i> according to the combi-OGAB method. While 64 of all the possible combinations were used in the calculation, 32 types of plasmid DNA were obtained from 50 randomly selected transformants. These transformants produced at least 30 types of peptides, including cyclic and linear variations with lengths ranging from 5 to 10 amino acids. Thus, this method enabled an efficient construction of NRPS gene cluster libraries with more than five module members, making it advantageous for applications in peptide libraries.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00671","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome the difficulty of building large nonribosomal peptide synthetase (NRPS) gene cluster libraries, an efficient one-pot method using Bacillus subtilis was developed. This new method, named Seamed Express Assembly Method (SEAM)-combi-Ordered Gene Assembly in Bacillus subtilis (OGAB), combines the SEAM-OGAB approach for NRPS gene cluster construction with the combi-OGAB method for combinatorial DNA library construction to randomly swap DNA fragments for NRPS modules. In this study, NRPS gene clusters of plipastatin and gramicidin S were used as the starting material. The full length of each gene cluster was prepared as plasmid DNA by introducing restriction enzyme SfiI sites into the module border according to SEAM-OGAB. These two plasmids were mixed, digested with SfiI, ligated in a tandem repeat form, and used to transform B. subtilis according to the combi-OGAB method. While 64 of all the possible combinations were used in the calculation, 32 types of plasmid DNA were obtained from 50 randomly selected transformants. These transformants produced at least 30 types of peptides, including cyclic and linear variations with lengths ranging from 5 to 10 amino acids. Thus, this method enabled an efficient construction of NRPS gene cluster libraries with more than five module members, making it advantageous for applications in peptide libraries.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.