Seyedeh Malahat Shadman, Reyhaneh Tavakoli-Koopaei, Masoud A Mehrgardi, Fatemeh Javadi-Zarnaghi
{"title":"ViPER: A visual bipolar electrochemical biosensor based on isothermal addition of a universal tag for detection of SARS-CoV-2.","authors":"Seyedeh Malahat Shadman, Reyhaneh Tavakoli-Koopaei, Masoud A Mehrgardi, Fatemeh Javadi-Zarnaghi","doi":"10.1016/j.bios.2025.117199","DOIUrl":null,"url":null,"abstract":"<p><p>Emergence of recent pandemics/endemics e.g. COVID-19 and Dengue fever, demonstrated the necessity of development of strategies for swift adaptation of present biosensor for detection of the new emerging pathogens. However, development of a biosensor for a new target is time- and labor-consuming. In this study, we aimed to integrate the primer exchange reaction (PER), an isothermal technique that extends an initiator DNA with a user-defined single-stranded DNA tail, with bipolar electrochemistry. This integration led to the development of a universal biosensor, termed ViPER. We demonstrated the utility of the developed system to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic RNA as a model. The genomic RNA was reverse transcribed to a short cDNA and was tailed with a universal tag, consequently, the tagged cDNA was applied to an electrochemiluminescence integrated bipolar electrochemical biosensor (BPE-ECL). ECL signals were recorded using a digital camera and analyzed by ImageJ. The platform demonstrated a linear response over a wide dynamic range of 10<sup>-7</sup>-10<sup>-17</sup> M for the target nucleic acid with a detection limit of 2.31 × 10<sup>-17</sup> M for synthetic targets. The biosensor could also successfully discriminate between biological RNA samples from infected and non-infected individuals. This study introduces the potential of DNA-based visual biosensors for detecting single-stranded RNAs in low-equipped environments, and it holds promises for further development of an ultrasensitive method for various human RNA-based viral pathogens. Moreover, we can design a platform with a predetermined DNA probe sequence for a vast variety of different targets, simply by changing the PER input.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":" ","pages":"117199"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2025.117199","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Emergence of recent pandemics/endemics e.g. COVID-19 and Dengue fever, demonstrated the necessity of development of strategies for swift adaptation of present biosensor for detection of the new emerging pathogens. However, development of a biosensor for a new target is time- and labor-consuming. In this study, we aimed to integrate the primer exchange reaction (PER), an isothermal technique that extends an initiator DNA with a user-defined single-stranded DNA tail, with bipolar electrochemistry. This integration led to the development of a universal biosensor, termed ViPER. We demonstrated the utility of the developed system to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic RNA as a model. The genomic RNA was reverse transcribed to a short cDNA and was tailed with a universal tag, consequently, the tagged cDNA was applied to an electrochemiluminescence integrated bipolar electrochemical biosensor (BPE-ECL). ECL signals were recorded using a digital camera and analyzed by ImageJ. The platform demonstrated a linear response over a wide dynamic range of 10-7-10-17 M for the target nucleic acid with a detection limit of 2.31 × 10-17 M for synthetic targets. The biosensor could also successfully discriminate between biological RNA samples from infected and non-infected individuals. This study introduces the potential of DNA-based visual biosensors for detecting single-stranded RNAs in low-equipped environments, and it holds promises for further development of an ultrasensitive method for various human RNA-based viral pathogens. Moreover, we can design a platform with a predetermined DNA probe sequence for a vast variety of different targets, simply by changing the PER input.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.