Sensitivity improvement by Langmuir film formation on a spectroelectrochemical fiber-optic sensor surface.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analytical Methods Pub Date : 2025-02-05 DOI:10.1039/d4ay01874e
Takamichi Yamamoto, Tatsuya Orii, Takuya Okazaki, Sarkawi Muhammad, Kazuto Sazawa, Kazuharu Sugawara, Hideki Kuramitz
{"title":"Sensitivity improvement by Langmuir film formation on a spectroelectrochemical fiber-optic sensor surface.","authors":"Takamichi Yamamoto, Tatsuya Orii, Takuya Okazaki, Sarkawi Muhammad, Kazuto Sazawa, Kazuharu Sugawara, Hideki Kuramitz","doi":"10.1039/d4ay01874e","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a method for enhancing spectroelectrochemical sensor sensitivity by incorporating optical fiber technology. The sensor comprises a gold mesh electrode coated on the surface of an exposed optical fiber core. Total reflection attenuation spectroscopy was employed to measure the optical properties of the fiber core surface. To enhance sensitivity, we investigated surfactant addition to the sample, anticipating the formation of an electrostatic film on the optical fiber core surface. Spectroscopic measurements were conducted on 24 dyes, including cationic methylene blue and anionic indigosulfonic acid, as target substances. Consequently, adding surfactant at approximately one-tenth of the critical micelle concentration slightly improved the measurement sensitivity for cationic dyes, with a 2.3-fold increase observed for methylene blue. Previously challenging anionic dyes were successfully detected using this method. In addition, this technique was successfully applied to sulfide ion determination using the absorbance spectrophotometric method with methylene blue. The findings indicated that this approach markedly enhances the sensitivity and adaptability of spectroelectrochemical sensors using fiber optic, particularly in the detection of a wide variety of chemical substances.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01874e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a method for enhancing spectroelectrochemical sensor sensitivity by incorporating optical fiber technology. The sensor comprises a gold mesh electrode coated on the surface of an exposed optical fiber core. Total reflection attenuation spectroscopy was employed to measure the optical properties of the fiber core surface. To enhance sensitivity, we investigated surfactant addition to the sample, anticipating the formation of an electrostatic film on the optical fiber core surface. Spectroscopic measurements were conducted on 24 dyes, including cationic methylene blue and anionic indigosulfonic acid, as target substances. Consequently, adding surfactant at approximately one-tenth of the critical micelle concentration slightly improved the measurement sensitivity for cationic dyes, with a 2.3-fold increase observed for methylene blue. Previously challenging anionic dyes were successfully detected using this method. In addition, this technique was successfully applied to sulfide ion determination using the absorbance spectrophotometric method with methylene blue. The findings indicated that this approach markedly enhances the sensitivity and adaptability of spectroelectrochemical sensors using fiber optic, particularly in the detection of a wide variety of chemical substances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
期刊最新文献
An alumina-modified glassy carbon electrode: a robust platform for accurate nimodipine detection in pharmaceutical applications. Near infrared-emitting carbon dots for the detection of glial fibrillary acidic protein (GFAP): a non-enzymatic approach for the early identification of stroke and glioblastoma. Sensitivity improvement by Langmuir film formation on a spectroelectrochemical fiber-optic sensor surface. Determination of eight fungicides in tanned leather by liquid chromatography with mass spectrometry and with diode array spectrophotometric detection. A probe-mediated fluorescent biosensor for MC-LR detection using exonuclease III as a signal amplifier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1