Redox-Responsive Side Chain Structural Changes in a Seven-Membered Cyclic α,α-Disubstituted α-Amino Acid with a Disulfide Bond Enable Reversible Conformational Changes in Peptides.
{"title":"Redox-Responsive Side Chain Structural Changes in a Seven-Membered Cyclic α,α-Disubstituted α-Amino Acid with a Disulfide Bond Enable Reversible Conformational Changes in Peptides.","authors":"Makoto Oba, Hikaru Nonaka, Tomohiro Umeno, Takuma Kato, Mitsunobu Doi, Atsushi Ueda, Masakazu Tanaka","doi":"10.1002/cplu.202400772","DOIUrl":null,"url":null,"abstract":"<p><p>We report the development of a redox-responsive system that induces reversible conformational changes in peptides through the design of a seven-membered cyclic α,α-disubstituted α-amino acid with a disulfide bond, 5-amino-1,2-dithiepane-5-carboxylic acid (Dtp). Upon reduction, the disulfide bond in Dtp was cleaved to form thiols, converting Dtp into (2-mercaptoethyl)homocysteine (Mhc), and this process was reversed by oxidation. Dtp-containing peptides predominantly adopted 3<sub>10</sub>-helical conformation in solution, whereas Mhc-containing peptides exhibited a mixture of helical and other conformations. This redox-responsive mechanism allows for precise control over peptide secondary structures, making it a promising approach for designing functional helical peptides capable of acting molecular switches in response to intracellular reductive environments.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400772"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400772","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report the development of a redox-responsive system that induces reversible conformational changes in peptides through the design of a seven-membered cyclic α,α-disubstituted α-amino acid with a disulfide bond, 5-amino-1,2-dithiepane-5-carboxylic acid (Dtp). Upon reduction, the disulfide bond in Dtp was cleaved to form thiols, converting Dtp into (2-mercaptoethyl)homocysteine (Mhc), and this process was reversed by oxidation. Dtp-containing peptides predominantly adopted 310-helical conformation in solution, whereas Mhc-containing peptides exhibited a mixture of helical and other conformations. This redox-responsive mechanism allows for precise control over peptide secondary structures, making it a promising approach for designing functional helical peptides capable of acting molecular switches in response to intracellular reductive environments.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.