Automated orthodontic diagnosis via self-supervised learning and multi-attribute classification using lateral cephalograms.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL BioMedical Engineering OnLine Pub Date : 2025-02-04 DOI:10.1186/s12938-025-01345-0
Qiao Chang, Yuxing Bai, Shaofeng Wang, Fan Wang, Shuang Liang, Xianju Xie
{"title":"Automated orthodontic diagnosis via self-supervised learning and multi-attribute classification using lateral cephalograms.","authors":"Qiao Chang, Yuxing Bai, Shaofeng Wang, Fan Wang, Shuang Liang, Xianju Xie","doi":"10.1186/s12938-025-01345-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Malocclusion, characterized by dental misalignment and improper occlusal relationships, significantly impacts oral health and daily functioning, with a global prevalence of 56%. Lateral cephalogram is a crucial diagnostic tool in orthodontic treatment, providing insights into various structural characteristics.</p><p><strong>Methods: </strong>This study introduces a pre-training approach using multi-center lateral cephalograms for self-supervised learning, aimed at improving model generalization across diverse clinical data domains. Additionally, a multi-attribute classification network is proposed, leveraging attribute correlations to optimize parameters and enhance classification performance.</p><p><strong>Results: </strong>Comprehensive evaluation on both public and clinical datasets showcases the superiority of the proposed framework, achieving an impressive average accuracy of 90.02%. The developed Self-supervised Pre-training and Multi-Attribute (SPMA) network achieves a best match ratio (MR) score of 71.38% and a low Hamming loss (HL) of 0.0425%, demonstrating its efficacy in orthodontic diagnosis from lateral cephalograms.</p><p><strong>Conclusions: </strong>This work contributes significantly to advancing automated diagnostic tools in orthodontics, addressing the critical need for accurate and efficient malocclusion diagnosis. The outcomes not only improve the efficiency and accuracy of diagnosis, but also have the potential to reduce healthcare costs associated with orthodontic treatments.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"9"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01345-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Malocclusion, characterized by dental misalignment and improper occlusal relationships, significantly impacts oral health and daily functioning, with a global prevalence of 56%. Lateral cephalogram is a crucial diagnostic tool in orthodontic treatment, providing insights into various structural characteristics.

Methods: This study introduces a pre-training approach using multi-center lateral cephalograms for self-supervised learning, aimed at improving model generalization across diverse clinical data domains. Additionally, a multi-attribute classification network is proposed, leveraging attribute correlations to optimize parameters and enhance classification performance.

Results: Comprehensive evaluation on both public and clinical datasets showcases the superiority of the proposed framework, achieving an impressive average accuracy of 90.02%. The developed Self-supervised Pre-training and Multi-Attribute (SPMA) network achieves a best match ratio (MR) score of 71.38% and a low Hamming loss (HL) of 0.0425%, demonstrating its efficacy in orthodontic diagnosis from lateral cephalograms.

Conclusions: This work contributes significantly to advancing automated diagnostic tools in orthodontics, addressing the critical need for accurate and efficient malocclusion diagnosis. The outcomes not only improve the efficiency and accuracy of diagnosis, but also have the potential to reduce healthcare costs associated with orthodontic treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
期刊最新文献
Automated orthodontic diagnosis via self-supervised learning and multi-attribute classification using lateral cephalograms. A model-based spectral directional approach reveals the long-term impact of COVID-19 on cardiorespiratory control and baroreflex. Deep learning-based algorithm for classifying high-resolution computed tomography features in coal workers' pneumoconiosis. Research progress in the regulation of endothelial cells and smooth muscle cells using a micro-nanostructure. 4D printing: innovative solutions and technological advances in orthopedic repair and reconstruction, personalized treatment and drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1