Polygenic prediction for underrepresented populations through transfer learning by utilizing genetic similarity shared with European populations.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-11-22 DOI:10.1093/bib/bbaf048
Yiyang Zhu, Wenying Chen, Kexuan Zhu, Yuxin Liu, Shuiping Huang, Ping Zeng
{"title":"Polygenic prediction for underrepresented populations through transfer learning by utilizing genetic similarity shared with European populations.","authors":"Yiyang Zhu, Wenying Chen, Kexuan Zhu, Yuxin Liu, Shuiping Huang, Ping Zeng","doi":"10.1093/bib/bbaf048","DOIUrl":null,"url":null,"abstract":"<p><p>Because current genome-wide association studies are primarily conducted in individuals of European ancestry and information disparities exist among different populations, the polygenic score derived from Europeans thus exhibits poor transferability. Borrowing the idea of transfer learning, which enables the utilization of knowledge acquired from auxiliary samples to enhance learning capability in target samples, we propose transPGS, a novel polygenic score method, for genetic prediction in underrepresented populations by leveraging genetic similarity shared between the European and non-European populations while explaining the trans-ethnic difference in linkage disequilibrium (LD) and effect sizes. We demonstrate the usefulness and robustness of transPGS in elevated prediction accuracy via individual-level and summary-level simulations and apply it to seven continuous phenotypes and three diseases in the African, Chinese, and East Asian populations of the UK Biobank and Genetic Epidemiology Research Study on Adult Health and Aging cohorts. We further reveal that distinct LD and minor allele frequency patterns across ancestral groups are responsible for the dissatisfactory portability of PGS.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf048","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Because current genome-wide association studies are primarily conducted in individuals of European ancestry and information disparities exist among different populations, the polygenic score derived from Europeans thus exhibits poor transferability. Borrowing the idea of transfer learning, which enables the utilization of knowledge acquired from auxiliary samples to enhance learning capability in target samples, we propose transPGS, a novel polygenic score method, for genetic prediction in underrepresented populations by leveraging genetic similarity shared between the European and non-European populations while explaining the trans-ethnic difference in linkage disequilibrium (LD) and effect sizes. We demonstrate the usefulness and robustness of transPGS in elevated prediction accuracy via individual-level and summary-level simulations and apply it to seven continuous phenotypes and three diseases in the African, Chinese, and East Asian populations of the UK Biobank and Genetic Epidemiology Research Study on Adult Health and Aging cohorts. We further reveal that distinct LD and minor allele frequency patterns across ancestral groups are responsible for the dissatisfactory portability of PGS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用与欧洲人群的遗传相似性,通过迁移学习对代表性不足的人群进行多基因预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TRIAGE: an R package for regulatory gene analysis. AutoXAI4Omics: an automated explainable AI tool for omics and tabular data. MCGAE: unraveling tumor invasion through integrated multimodal spatial transcriptomics. tcrBLOSUM: an amino acid substitution matrix for sensitive alignment of distant epitope-specific TCRs. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1