{"title":"Flavonoids and their metal complexes as potential agents for diabetes mellitus with future perspectives.","authors":"Shuang Lv, Zhenbao Zhu, Hang Xiao","doi":"10.1080/10408398.2025.2461238","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is a global health burden, with hyperglycemia as the main hallmark. This review commences with a concise overview of the intricate mechanisms underlying glucose uptake and utilization in organisms. Notably, we emphasize that T2DM management strategies pivot on delaying carbohydrate digestion, augmenting insulin secretion, and enhancing insulin sensitivity in target tissues. Unfortunately, the drugs currently available in the market for the treatment of T2DM have unpleasant side effects, spurring an urgent quest for safer and more efficacious alternatives. Flavonoids, emerging as a promising class of bioactive compounds derived from plants, offer a multi-faceted approach to diabetes treatment. Specifically, they potently inhibit enzymes such as α-amylase, α-glucosidase, dipeptidyl peptidase-4 (DPP-4), glycogen phosphorylase (GP) and protein-tyrosine phosphatase-1B (PTP1B). Through an in-depth analysis, this review not only summarizes these inhibitory actions but also establishes the structure-activity relationship (SAR), providing a blueprint for rational drug design. However, the clinical translation of flavonoids has been hampered by their suboptimal water solubility and bioavailability, attributable to the characteristic carbonyl and hydroxyl groups. Ingeniously, this chemical quirk has been harnessed to engineer metal chelates, which exhibit enhanced pharmacokinetic profiles. Herein, we offer an exhaustive overview of the latest advancements in flavonoid metal complexes research, spotlighting their potential as next-generation diabetes therapeutics. Available data are poised to galvanize the development of novel flavonoid derivatives, be it as potent drugs or functional foods, for combating T2DM.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-31"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2461238","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes mellitus (T2DM) is a global health burden, with hyperglycemia as the main hallmark. This review commences with a concise overview of the intricate mechanisms underlying glucose uptake and utilization in organisms. Notably, we emphasize that T2DM management strategies pivot on delaying carbohydrate digestion, augmenting insulin secretion, and enhancing insulin sensitivity in target tissues. Unfortunately, the drugs currently available in the market for the treatment of T2DM have unpleasant side effects, spurring an urgent quest for safer and more efficacious alternatives. Flavonoids, emerging as a promising class of bioactive compounds derived from plants, offer a multi-faceted approach to diabetes treatment. Specifically, they potently inhibit enzymes such as α-amylase, α-glucosidase, dipeptidyl peptidase-4 (DPP-4), glycogen phosphorylase (GP) and protein-tyrosine phosphatase-1B (PTP1B). Through an in-depth analysis, this review not only summarizes these inhibitory actions but also establishes the structure-activity relationship (SAR), providing a blueprint for rational drug design. However, the clinical translation of flavonoids has been hampered by their suboptimal water solubility and bioavailability, attributable to the characteristic carbonyl and hydroxyl groups. Ingeniously, this chemical quirk has been harnessed to engineer metal chelates, which exhibit enhanced pharmacokinetic profiles. Herein, we offer an exhaustive overview of the latest advancements in flavonoid metal complexes research, spotlighting their potential as next-generation diabetes therapeutics. Available data are poised to galvanize the development of novel flavonoid derivatives, be it as potent drugs or functional foods, for combating T2DM.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.