Emna Ben Saad, Anne Friedrich, Frédérique Fischer, Olivier Courot, Joseph Schacherer, Claudine Bleykasten
{"title":"Comprehensive survey of kombucha microbial communities of diverse origins and fermentation practices.","authors":"Emna Ben Saad, Anne Friedrich, Frédérique Fischer, Olivier Courot, Joseph Schacherer, Claudine Bleykasten","doi":"10.1093/femsyr/foaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Kombucha is a unique, naturally fermented sweetened tea produced for thousands of years, relying on a symbiotic microbiota in a floating biofilm, used for successive fermentations. The microbial communities consist of yeast and bacteria species, distributed across two phases: the liquid and the biofilm fractions. In the fermentation of kombucha, various starters of different shapes and origins are used and there are multiple brewing practices. By metabarcoding, we explored here the consortia and their evolution from a collection of 23 starters coming from various origins summarizing the diversity of kombucha fermentation processes. A core microbiota of yeast and bacteria has been identified in these diverse kombucha symbiotic consortia, revealing consistent core taxa across SCOBYs from different starters. The common core consists of five taxa: two yeast species from the Brettanomyces genus (B. bruxellensis and B. anomalus), and bacterial taxa Komagataeibacter, Lactobacillus, Acetobacteraceae, including the Acetobacter genus. The distribution of yeast and bacteria core taxa differs between the liquid and biofilm fractions, as well as between the 'mother' and 'daughter' biofilms used in successive fermentations. In terms of microbial composition, the diversity is relatively low, with only a few accessory taxa identified. Overall, our study provides a deeper understanding of the core and accessory taxa involved in kombucha fermentation.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kombucha is a unique, naturally fermented sweetened tea produced for thousands of years, relying on a symbiotic microbiota in a floating biofilm, used for successive fermentations. The microbial communities consist of yeast and bacteria species, distributed across two phases: the liquid and the biofilm fractions. In the fermentation of kombucha, various starters of different shapes and origins are used and there are multiple brewing practices. By metabarcoding, we explored here the consortia and their evolution from a collection of 23 starters coming from various origins summarizing the diversity of kombucha fermentation processes. A core microbiota of yeast and bacteria has been identified in these diverse kombucha symbiotic consortia, revealing consistent core taxa across SCOBYs from different starters. The common core consists of five taxa: two yeast species from the Brettanomyces genus (B. bruxellensis and B. anomalus), and bacterial taxa Komagataeibacter, Lactobacillus, Acetobacteraceae, including the Acetobacter genus. The distribution of yeast and bacteria core taxa differs between the liquid and biofilm fractions, as well as between the 'mother' and 'daughter' biofilms used in successive fermentations. In terms of microbial composition, the diversity is relatively low, with only a few accessory taxa identified. Overall, our study provides a deeper understanding of the core and accessory taxa involved in kombucha fermentation.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.