Analyzing the impact of glycemic metabolic status on cardiovascular mortality and all-cause mortality related to the estimated glucose disposal rate: a nationwide cohort study.

IF 3.9 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM Frontiers in Endocrinology Pub Date : 2025-01-21 eCollection Date: 2024-01-01 DOI:10.3389/fendo.2024.1494820
Shiming He, Chao Wang, Xin Huang, Guoan Jian, Zihao Lu, Kun Jiang, Guobo Xie, Guotai Sheng, Yang Zou
{"title":"Analyzing the impact of glycemic metabolic status on cardiovascular mortality and all-cause mortality related to the estimated glucose disposal rate: a nationwide cohort study.","authors":"Shiming He, Chao Wang, Xin Huang, Guoan Jian, Zihao Lu, Kun Jiang, Guobo Xie, Guotai Sheng, Yang Zou","doi":"10.3389/fendo.2024.1494820","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The Estimated Glucose Disposal Rate (eGDR) serves as a surrogate marker for insulin resistance, with numerous studies highlighting its significant prognostic value. This paper aims to analyze the impact of eGDR on cardiovascular and all-cause mortality across different glycemic metabolic statuses, including normal fasting glucose (NFG), prediabetes, and diabetes.</p><p><strong>Methods: </strong>This study included 46,016 American adults who underwent health examinations as part of the National Health and Nutrition Examination Survey from 1999 to 2018. Multivariable Cox regression was employed to explore the relationships between eGDR and mortality rates under varying glycemic states. Additionally, Kaplan-Meier curves were used to compare the cumulative incidence of cardiovascular and all-cause mortality across different metabolic statuses. Finally, the predictive value of eGDR for mortality was assessed using receiver operating characteristic curves.</p><p><strong>Results: </strong>During an average follow-up of 115 months, a total of 6,906 (15.01%) participants experienced all-cause mortality, with 1,798 (3.91%) deaths attributed to cardiovascular causes. Kaplan-Meier analysis revealed that higher eGDR levels were associated with gradually reduced mortality rates. After adjusting for confounders, elevated eGDR levels were protective against both cardiovascular and all-cause mortality; the protective effect was notably stronger for cardiovascular mortality [Cardiovascular mortality hazard ratio: 0.92; All-cause mortality hazard ratio: 0.94]. Further interaction tests indicated that glycemic status significantly modified the protective effect of eGDR (<i>P</i>-interaction<0.0001); specifically, high eGDR conferred stronger protection against cardiovascular and all-cause mortality in individuals with NFG and prediabetes compared to those with diabetes. Receiver operating characteristic analysis suggested that eGDR had superior predictive value for mortality in the NFG and prediabetic populations compared to the diabetic group.</p><p><strong>Conclusion: </strong>eGDR is a straightforward surrogate for insulin resistance, acting as a protective factor against cardiovascular and all-cause mortality in American adults, with glycemic status modifying this protective effect. Specifically, high eGDR levels offer stronger protection in individuals with NFG and prediabetes compared to those with diabetes; moreover, eGDR appears to be more suitable for predicting mortality events in the NFG and prediabetic populations.</p>","PeriodicalId":12447,"journal":{"name":"Frontiers in Endocrinology","volume":"15 ","pages":"1494820"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fendo.2024.1494820","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The Estimated Glucose Disposal Rate (eGDR) serves as a surrogate marker for insulin resistance, with numerous studies highlighting its significant prognostic value. This paper aims to analyze the impact of eGDR on cardiovascular and all-cause mortality across different glycemic metabolic statuses, including normal fasting glucose (NFG), prediabetes, and diabetes.

Methods: This study included 46,016 American adults who underwent health examinations as part of the National Health and Nutrition Examination Survey from 1999 to 2018. Multivariable Cox regression was employed to explore the relationships between eGDR and mortality rates under varying glycemic states. Additionally, Kaplan-Meier curves were used to compare the cumulative incidence of cardiovascular and all-cause mortality across different metabolic statuses. Finally, the predictive value of eGDR for mortality was assessed using receiver operating characteristic curves.

Results: During an average follow-up of 115 months, a total of 6,906 (15.01%) participants experienced all-cause mortality, with 1,798 (3.91%) deaths attributed to cardiovascular causes. Kaplan-Meier analysis revealed that higher eGDR levels were associated with gradually reduced mortality rates. After adjusting for confounders, elevated eGDR levels were protective against both cardiovascular and all-cause mortality; the protective effect was notably stronger for cardiovascular mortality [Cardiovascular mortality hazard ratio: 0.92; All-cause mortality hazard ratio: 0.94]. Further interaction tests indicated that glycemic status significantly modified the protective effect of eGDR (P-interaction<0.0001); specifically, high eGDR conferred stronger protection against cardiovascular and all-cause mortality in individuals with NFG and prediabetes compared to those with diabetes. Receiver operating characteristic analysis suggested that eGDR had superior predictive value for mortality in the NFG and prediabetic populations compared to the diabetic group.

Conclusion: eGDR is a straightforward surrogate for insulin resistance, acting as a protective factor against cardiovascular and all-cause mortality in American adults, with glycemic status modifying this protective effect. Specifically, high eGDR levels offer stronger protection in individuals with NFG and prediabetes compared to those with diabetes; moreover, eGDR appears to be more suitable for predicting mortality events in the NFG and prediabetic populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Endocrinology
Frontiers in Endocrinology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
5.70
自引率
9.60%
发文量
3023
审稿时长
14 weeks
期刊介绍: Frontiers in Endocrinology is a field journal of the "Frontiers in" journal series. In today’s world, endocrinology is becoming increasingly important as it underlies many of the challenges societies face - from obesity and diabetes to reproduction, population control and aging. Endocrinology covers a broad field from basic molecular and cellular communication through to clinical care and some of the most crucial public health issues. The journal, thus, welcomes outstanding contributions in any domain of endocrinology. Frontiers in Endocrinology publishes articles on the most outstanding discoveries across a wide research spectrum of Endocrinology. The mission of Frontiers in Endocrinology is to bring all relevant Endocrinology areas together on a single platform.
期刊最新文献
Case report: Long-term efficacy and safety of semaglutide in the treatment of syndromic obesity in Prader Willi syndrome - case series and literature review. Development and validation of machine learning models for MASLD: based on multiple potential screening indicators. Analyzing the impact of glycemic metabolic status on cardiovascular mortality and all-cause mortality related to the estimated glucose disposal rate: a nationwide cohort study. Glucagon-like peptide-1 receptor agonists and type 1 diabetes: a potential game changer? Immortalized Schwann cell lines as useful tools for pathogenesis-based therapeutic approaches to diabetic peripheral neuropathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1