The Japanese encephalitis virus NS1 protein concentrates ER membranes in a cytoskeleton-independent manner to facilitate viral replication.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2025-02-05 DOI:10.1128/jvi.02113-24
Shengda Xie, Xinxin Lin, Qing Yang, Miaolei Shi, Xingmiao Yang, Ziyu Cao, Ruibing Cao
{"title":"The Japanese encephalitis virus NS1 protein concentrates ER membranes in a cytoskeleton-independent manner to facilitate viral replication.","authors":"Shengda Xie, Xinxin Lin, Qing Yang, Miaolei Shi, Xingmiao Yang, Ziyu Cao, Ruibing Cao","doi":"10.1128/jvi.02113-24","DOIUrl":null,"url":null,"abstract":"<p><p>Orthoflaviviruses remodel the endoplasmic reticulum (ER) network to construct replication organelles (ROs) for RNA replication. In this study, we demonstrate that the Japanese encephalitis virus (JEV) NS1 protein concentrates ER membranes in the perinuclear region, which provides a substantial membrane source for viral replication. Subsequently, the virus forms main replication organelles within this membrane-concentrated area to facilitate efficient replication. This process relies on the ER localization signal, glycosylation, dimerization, and membrane-binding sites of the NS1 protein. In conclusion, our study highlights the role of the NS1 protein in the formation of the ROs by JEV, providing new insights into orthoflavivirus replication.IMPORTANCEOrthoflaviviruses use the endoplasmic reticulum (ER) membranes for replication by forming invaginations to assemble the replication organelles. Here, we found that Japanese encephalitis virus (JEV) utilizes the NS1 protein to concentrate a significant number of ER membranes in the perinuclear area, thereby providing a membrane source for viral replication and facilitating the formation of main replication organelles (MROs). This process depends on the ER localization signals of NS1, as well as its glycosylation, dimerization, and membrane-binding sites, but not on the cytoskeleton. In summary, our study highlights how NS1 remodels ER membranes to facilitate the formation of MROs for JEV, thereby accelerating viral replication.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0211324"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02113-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Orthoflaviviruses remodel the endoplasmic reticulum (ER) network to construct replication organelles (ROs) for RNA replication. In this study, we demonstrate that the Japanese encephalitis virus (JEV) NS1 protein concentrates ER membranes in the perinuclear region, which provides a substantial membrane source for viral replication. Subsequently, the virus forms main replication organelles within this membrane-concentrated area to facilitate efficient replication. This process relies on the ER localization signal, glycosylation, dimerization, and membrane-binding sites of the NS1 protein. In conclusion, our study highlights the role of the NS1 protein in the formation of the ROs by JEV, providing new insights into orthoflavivirus replication.IMPORTANCEOrthoflaviviruses use the endoplasmic reticulum (ER) membranes for replication by forming invaginations to assemble the replication organelles. Here, we found that Japanese encephalitis virus (JEV) utilizes the NS1 protein to concentrate a significant number of ER membranes in the perinuclear area, thereby providing a membrane source for viral replication and facilitating the formation of main replication organelles (MROs). This process depends on the ER localization signals of NS1, as well as its glycosylation, dimerization, and membrane-binding sites, but not on the cytoskeleton. In summary, our study highlights how NS1 remodels ER membranes to facilitate the formation of MROs for JEV, thereby accelerating viral replication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Zika virus inhibits cell death by inhibiting the expression of NLRP3 and A20. Perturbation of de novo lipogenesis hinders MERS-CoV assembly and release, but not the biogenesis of viral replication organelles. Characterization and therapeutic potential of newly isolated bacteriophages against Staphylococcus species in bovine mastitis. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1