Linmei Li, Bowei Xue, Shangbo Yan, Hui Shen, Yang Yang, Yiran Fan, Ruiyang Zhang, Weishou Shen, Nan Gao
{"title":"Stutzerimonas stutzeri culture enhances microbial community structure and tomato seedling growth in saline soil.","authors":"Linmei Li, Bowei Xue, Shangbo Yan, Hui Shen, Yang Yang, Yiran Fan, Ruiyang Zhang, Weishou Shen, Nan Gao","doi":"10.1093/jambio/lxaf026","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Plant growth-promoting rhizobacteria (PGPR) improve microbial community structure, promote crop growth, and reduce greenhouse gas emissions in agricultural soils; however, the effects of PGPR fermentation on the growth and salt tolerance of tomato plants remain unclear. In this study, we aimed to investigate the effects of the PGPR Stutzerimonas stutzeri NRCB010 on the microbial communities, tomato growth, and nitrous oxide (N2O) emissions in saline soil by performing a greenhouse pot experiment.</p><p><strong>Methods and results: </strong>The experiment was conducted under two soil salt concentrations (0 and 3 g kg-1 NaCl) and three treatments (LSFJ broth, NRCB010 cells, and NRCB010 culture). Both salt stress and NRCB010 treatments significantly affected the physicochemical properties and microbial community structure of tomato rhizosphere soil. Treatment with 3 g kg-1 NaCl significantly reduced the shoot and root dry weights of the plants compared with those of the control plants. Application of NRCB010 cells as well as that of culture promoted the growth of tomato seedlings and alleviated salt stress. The copy number changes in the nosZⅠ gene on day 3 and amoA gene on day 25 demonstrated that NRCB010 cells significantly reduced soil N2O emissions when treated with 0 g kg-1 NaCl. Furthermore, soil physicochemical properties, plant biomass, and soil microbial diversity were correlated with each other.</p><p><strong>Conclusions: </strong>The results emphasize the enormous potential of S. stutzeri NRCB010 culture to resist abiotic stress, promote crop growth, and improve the rhizosphere soil microenvironment; however, its ability to decrease N2O emissions is constrained by soil salinity.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Plant growth-promoting rhizobacteria (PGPR) improve microbial community structure, promote crop growth, and reduce greenhouse gas emissions in agricultural soils; however, the effects of PGPR fermentation on the growth and salt tolerance of tomato plants remain unclear. In this study, we aimed to investigate the effects of the PGPR Stutzerimonas stutzeri NRCB010 on the microbial communities, tomato growth, and nitrous oxide (N2O) emissions in saline soil by performing a greenhouse pot experiment.
Methods and results: The experiment was conducted under two soil salt concentrations (0 and 3 g kg-1 NaCl) and three treatments (LSFJ broth, NRCB010 cells, and NRCB010 culture). Both salt stress and NRCB010 treatments significantly affected the physicochemical properties and microbial community structure of tomato rhizosphere soil. Treatment with 3 g kg-1 NaCl significantly reduced the shoot and root dry weights of the plants compared with those of the control plants. Application of NRCB010 cells as well as that of culture promoted the growth of tomato seedlings and alleviated salt stress. The copy number changes in the nosZⅠ gene on day 3 and amoA gene on day 25 demonstrated that NRCB010 cells significantly reduced soil N2O emissions when treated with 0 g kg-1 NaCl. Furthermore, soil physicochemical properties, plant biomass, and soil microbial diversity were correlated with each other.
Conclusions: The results emphasize the enormous potential of S. stutzeri NRCB010 culture to resist abiotic stress, promote crop growth, and improve the rhizosphere soil microenvironment; however, its ability to decrease N2O emissions is constrained by soil salinity.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.