{"title":"Developing orbital-dependent corrections for the non-additive kinetic energy in subsystem density functional theory.","authors":"Larissa Sophie Eitelhuber, Denis G Artiukhin","doi":"10.1063/5.0241361","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel route to constructing cost-efficient semi-empirical approximations for the non-additive kinetic energy in subsystem density functional theory. The developed methodology is based on the use of Slater determinants composed of non-orthogonal Kohn-Sham-like orbitals for the evaluation of kinetic energy expectation values and the expansion of the inverse molecular-orbital overlap matrix into a Neumann series. By applying these techniques, we derived and implemented a series of orbital-dependent approximations for the non-additive kinetic energy, which are employed self-consistently. Our proof-of-principle computations demonstrated quantitatively correct results for potential energy curves and electron densities and hinted on the applicability of the introduced empirical parameters to different types of molecular systems and intermolecular interactions. Therefore, we conclude that the presented study is an important step toward constructing accurate and efficient orbital-dependent approximations for the non-additive kinetic energy applicable to large molecular systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0241361","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel route to constructing cost-efficient semi-empirical approximations for the non-additive kinetic energy in subsystem density functional theory. The developed methodology is based on the use of Slater determinants composed of non-orthogonal Kohn-Sham-like orbitals for the evaluation of kinetic energy expectation values and the expansion of the inverse molecular-orbital overlap matrix into a Neumann series. By applying these techniques, we derived and implemented a series of orbital-dependent approximations for the non-additive kinetic energy, which are employed self-consistently. Our proof-of-principle computations demonstrated quantitatively correct results for potential energy curves and electron densities and hinted on the applicability of the introduced empirical parameters to different types of molecular systems and intermolecular interactions. Therefore, we conclude that the presented study is an important step toward constructing accurate and efficient orbital-dependent approximations for the non-additive kinetic energy applicable to large molecular systems.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.