Sapajan Ibragimov, Andrey Lyalin, Sonu Kumar, Yuriko Ono, Tetsuya Taketsugu, Maciej Bobrowski
{"title":"Theoretical design of nanocatalysts based on (Fe2O3)n clusters for hydrogen production from ammonia.","authors":"Sapajan Ibragimov, Andrey Lyalin, Sonu Kumar, Yuriko Ono, Tetsuya Taketsugu, Maciej Bobrowski","doi":"10.1063/5.0242310","DOIUrl":null,"url":null,"abstract":"<p><p>The catalytic activities of high-spin small Fe(III) oxides have been investigated for efficient hydrogen production through ammonia decomposition, using the artificial force induced reaction method within the framework of density functional theory with the B3LYP hybrid exchange-correlation functional. Our results reveal that the adsorption free energy of NH3 on (Fe2O3)n (n = 1-4) decreases with increasing cluster size up to n = 3, followed by a slight increase at n = 4. The strongest NH3 adsorption energy, 28.55 kcal/mol, was found for Fe2O3, where NH3 interacts with a two-coordinated Fe site, forming an Fe-N bond with a length of 2.11 Å. A comparative analysis of NH3 dehydrogenation and H2 formation on various Fe(III) oxide sizes identifies the rate-determining steps for each reaction. We found that the rate-determining step for the full NH3 dehydrogenation on (Fe2O3)n (n = 1-4) is size-dependent, with the NH* → N* + H* reaction acting as the limiting step for n = 1-3. In addition, our findings indicate that H2 formation is favored following the partial decomposition of NH3 on Fe(III) oxides.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0242310","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic activities of high-spin small Fe(III) oxides have been investigated for efficient hydrogen production through ammonia decomposition, using the artificial force induced reaction method within the framework of density functional theory with the B3LYP hybrid exchange-correlation functional. Our results reveal that the adsorption free energy of NH3 on (Fe2O3)n (n = 1-4) decreases with increasing cluster size up to n = 3, followed by a slight increase at n = 4. The strongest NH3 adsorption energy, 28.55 kcal/mol, was found for Fe2O3, where NH3 interacts with a two-coordinated Fe site, forming an Fe-N bond with a length of 2.11 Å. A comparative analysis of NH3 dehydrogenation and H2 formation on various Fe(III) oxide sizes identifies the rate-determining steps for each reaction. We found that the rate-determining step for the full NH3 dehydrogenation on (Fe2O3)n (n = 1-4) is size-dependent, with the NH* → N* + H* reaction acting as the limiting step for n = 1-3. In addition, our findings indicate that H2 formation is favored following the partial decomposition of NH3 on Fe(III) oxides.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.