Francesco G Barone, Marco Marcello, Sylvie Urbé, Natalia Sanchez-Soriano, Michael J Clague
{"title":"Whole organism and tissue-specific analysis of pexophagy in <i>Drosophila</i>.","authors":"Francesco G Barone, Marco Marcello, Sylvie Urbé, Natalia Sanchez-Soriano, Michael J Clague","doi":"10.1098/rsob.240291","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisomes are essential organelles involved in critical metabolic processes in animals such as fatty acid oxidation, ether phospholipid production and reactive oxygen species detoxification. We have generated transgenic <i>Drosophila melanogaster</i> models expressing fluorescent reporters for the selective autophagy of peroxisomes, a process known as pexophagy. We show that these reporters are colocalized with a peroxisomal marker and that they can reflect pexophagy induction by iron chelation and inhibition by depletion of the core autophagy protein Atg5. Using light sheet microscopy, we have been able to obtain a global overview of pexophagy levels across the entire organism at different stages of development. Tissue-specific control of pexophagy is exemplified by areas of peroxisome abundance but minimal pexophagy, observed in clusters of oenocytes surrounded by epithelial cells where pexophagy is much more evident. Enhancement of pexophagy was achieved by feeding flies with the iron chelator deferiprone, in line with past results using mammalian cells. Specific drivers were used to visualize pexophagy in neurons, and to demonstrate that specific depletion in the larval central nervous system of Hsc70-5, the <i>Drosophila</i> homologue of the chaperone HSPA9/mortalin, led to a substantial elevation in pexophagy.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 2","pages":"240291"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240291","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxisomes are essential organelles involved in critical metabolic processes in animals such as fatty acid oxidation, ether phospholipid production and reactive oxygen species detoxification. We have generated transgenic Drosophila melanogaster models expressing fluorescent reporters for the selective autophagy of peroxisomes, a process known as pexophagy. We show that these reporters are colocalized with a peroxisomal marker and that they can reflect pexophagy induction by iron chelation and inhibition by depletion of the core autophagy protein Atg5. Using light sheet microscopy, we have been able to obtain a global overview of pexophagy levels across the entire organism at different stages of development. Tissue-specific control of pexophagy is exemplified by areas of peroxisome abundance but minimal pexophagy, observed in clusters of oenocytes surrounded by epithelial cells where pexophagy is much more evident. Enhancement of pexophagy was achieved by feeding flies with the iron chelator deferiprone, in line with past results using mammalian cells. Specific drivers were used to visualize pexophagy in neurons, and to demonstrate that specific depletion in the larval central nervous system of Hsc70-5, the Drosophila homologue of the chaperone HSPA9/mortalin, led to a substantial elevation in pexophagy.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.