A shared developmental genetic basis for sexually antagonistic male and female adaptations in the toothed water strider.

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Evolution Letters Pub Date : 2024-10-22 eCollection Date: 2025-02-01 DOI:10.1093/evlett/qrae056
Claudia Pruvôt, David Armisén, Pascale Roux, Göran Arnqvist, Locke Rowe, Arild Husby, Abderrahman Khila
{"title":"A shared developmental genetic basis for sexually antagonistic male and female adaptations in the toothed water strider.","authors":"Claudia Pruvôt, David Armisén, Pascale Roux, Göran Arnqvist, Locke Rowe, Arild Husby, Abderrahman Khila","doi":"10.1093/evlett/qrae056","DOIUrl":null,"url":null,"abstract":"<p><p>Sexual conflict can drive the divergence of male and female phenotypes and cross-species comparative analyses have documented patterns of correlated evolution of sex-specific traits that promote the evolutionary interests of the sexes. However, male-female coevolution can be highly dynamic, particularly if the male and female traits share an underlying genetic program. Here, we use water striders, a well-studied model system for sexually antagonistic coevolution, and ask whether sex-specific phenotypic adaptations covary across populations and whether they share a common developmental genetic basis. Using comparative analyses both at the population and species levels, we document an association between a derived male mate-grasping trait and a putative female antigrasping counteradaptation in the toothed water strider <i>Gerris odontogaster</i>. Interestingly, in several populations where males have partly lost their derived grasping trait, females have also reduced their antigrasping adaptation. We used RNAi to show that these male and female traits are both linked to a common developmental genetic program involving Hox- and sex-determination genes, despite the fact that they are different structures on different abdominal segments. Our work illustrates the dynamic nature of sexually antagonistic coevolution and suggests that the pleiotropic nature of developmental genetic programs can blur the distinction between inter- and intralocus genetic conflict.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 1","pages":"13-23"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae056","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sexual conflict can drive the divergence of male and female phenotypes and cross-species comparative analyses have documented patterns of correlated evolution of sex-specific traits that promote the evolutionary interests of the sexes. However, male-female coevolution can be highly dynamic, particularly if the male and female traits share an underlying genetic program. Here, we use water striders, a well-studied model system for sexually antagonistic coevolution, and ask whether sex-specific phenotypic adaptations covary across populations and whether they share a common developmental genetic basis. Using comparative analyses both at the population and species levels, we document an association between a derived male mate-grasping trait and a putative female antigrasping counteradaptation in the toothed water strider Gerris odontogaster. Interestingly, in several populations where males have partly lost their derived grasping trait, females have also reduced their antigrasping adaptation. We used RNAi to show that these male and female traits are both linked to a common developmental genetic program involving Hox- and sex-determination genes, despite the fact that they are different structures on different abdominal segments. Our work illustrates the dynamic nature of sexually antagonistic coevolution and suggests that the pleiotropic nature of developmental genetic programs can blur the distinction between inter- and intralocus genetic conflict.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
期刊最新文献
Correction to: A shared developmental genetic basis for sexually antagonistic male and female adaptations in the toothed water strider. Shared genetic architecture links energy metabolism, behavior and starvation resistance along a power-endurance axis. Does metabolic rate influence genome-wide amino acid composition in the course of animal evolution? Anisogamy and sex roles: a commentary. A shared developmental genetic basis for sexually antagonistic male and female adaptations in the toothed water strider.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1