Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Academic Radiology Pub Date : 2025-02-03 DOI:10.1016/j.acra.2025.01.023
Jinglei Yuan, Bing Li, Chu Zhang, Jing Wang, Bingsheng Huang, Liheng Ma
{"title":"Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture.","authors":"Jinglei Yuan, Bing Li, Chu Zhang, Jing Wang, Bingsheng Huang, Liheng Ma","doi":"10.1016/j.acra.2025.01.023","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.</p><p><strong>Method: </strong>A total of 254 patients (training cohort, n=132; test cohort 1, n=56;test cohort 2, n=66) who underwent hip or pelvic CT scans were included. Three different machine learning methods were used to build the Support Vector Machine (SVM) model, Logistic Regression (LR) model and Random Forest (RF) model respectively. The method that exhibited the best performance in the training cohort and test cohort 1 was selected to represent the radiomics model for subsequent studies. The mean CT Hounsfield unit of three-dimensional CT images at the proximal femur was extracted to construct the mean CTHU model. Multivariate logistic regression was performed using mean CT Hounsfield unit together with radiomics features, and the combined model was subsequently developed with a visualized nomogram.</p><p><strong>Results: </strong>Among the radiomics models based on three machine learning methods, the LR model showed the best performance in the training cohort (AUC=0.875, 95% CI=0.806-0.926) and in the test cohort 1 (AUC=0.851, 95% CI=0.730-0.932). Compared to the mean CT model and the LR model, the combined model showed superior discriminatory power in the training cohort (AUC=0.934, 95% CI=0.895-0.972), the test cohort 1 (AUC=0.893, 95% CI=0.812-0.974) and the test cohort 2 (AUC=0.851, 95% CI=0.742-0.927).</p><p><strong>Conclusion: </strong>The combined model, based on the mean CT Hounsfield unit of the proximal femur and radiomics features, can provide an accurate quantitative imaging basis for individualized risk prediction of hip fragility fracture.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.01.023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.

Method: A total of 254 patients (training cohort, n=132; test cohort 1, n=56;test cohort 2, n=66) who underwent hip or pelvic CT scans were included. Three different machine learning methods were used to build the Support Vector Machine (SVM) model, Logistic Regression (LR) model and Random Forest (RF) model respectively. The method that exhibited the best performance in the training cohort and test cohort 1 was selected to represent the radiomics model for subsequent studies. The mean CT Hounsfield unit of three-dimensional CT images at the proximal femur was extracted to construct the mean CTHU model. Multivariate logistic regression was performed using mean CT Hounsfield unit together with radiomics features, and the combined model was subsequently developed with a visualized nomogram.

Results: Among the radiomics models based on three machine learning methods, the LR model showed the best performance in the training cohort (AUC=0.875, 95% CI=0.806-0.926) and in the test cohort 1 (AUC=0.851, 95% CI=0.730-0.932). Compared to the mean CT model and the LR model, the combined model showed superior discriminatory power in the training cohort (AUC=0.934, 95% CI=0.895-0.972), the test cohort 1 (AUC=0.893, 95% CI=0.812-0.974) and the test cohort 2 (AUC=0.851, 95% CI=0.742-0.927).

Conclusion: The combined model, based on the mean CT Hounsfield unit of the proximal femur and radiomics features, can provide an accurate quantitative imaging basis for individualized risk prediction of hip fragility fracture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
期刊最新文献
Healthcare Industry and Environmental Sustainability: Radiology's Next Biggest Opportunity for Meaningful Change. A Deep Radiomics Model for Lymph Node Metastasis Prediction of Early-Stage Gastric Cancer Based on CT Images. Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture. Radiomics Analysis of Different Machine Learning Models based on Multiparametric MRI to Identify Benign and Malignant Testicular Lesions. MR Imaging Techniques for Microenvironment Mapping of the Glioma Tumors: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1