Adam M Culiver, Dustin R Grooms, Jaclyn B Caccese, Scott M Hayes, Laura C Schmitt, James A Oñate
{"title":"fMRI Activation in Sensorimotor Regions at 6 Weeks After Anterior Cruciate Ligament Reconstruction.","authors":"Adam M Culiver, Dustin R Grooms, Jaclyn B Caccese, Scott M Hayes, Laura C Schmitt, James A Oñate","doi":"10.1177/03635465251313808","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain activity during knee movements is altered throughout the sensorimotor network after anterior cruciate ligament reconstruction (ACLR). Patients at 2 to 5 years after surgery appear to require greater neural activity to perform basic knee movement patterns, but it is unclear if brain activity differences within sensorimotor regions are present early after surgery. It is also unknown whether uninvolved knee movements elicit similar or unique activity compared with involved knee movements.</p><p><strong>Purpose: </strong>To examine brain activity in sensorimotor regions during involved and uninvolved knee movements in patients at 6 weeks after ACLR compared with control participants.</p><p><strong>Study design: </strong>Cohort study; Level of evidence, 2.</p><p><strong>Methods: </strong>A total of 15 patients who underwent ACLR (mean age, 21.9 ± 4.3 years [range, 17-29 years]; 8 female) and 15 control participants performed 30-second blocks of repeated knee flexion and extension, followed by 30 seconds of rest, during functional magnetic resonance imaging. Regions of interest included the right and left primary motor cortex (M1), right and left primary somatosensory cortex (S1), supplementary motor area (SMA), precuneus, and lingual gyrus. Activity from task-relevant voxels (move > rest) was extracted, and generalized estimating equations evaluated the main effect of group and group-by-limb interaction. Effect sizes were calculated using the Cohen <i>d</i>.</p><p><strong>Results: </strong>Reduced brain activity during knee flexion and extension was observed in the ACLR group in the ipsilateral M1 and S1, contralateral S1, SMA, and precuneus during movements of the involved and uninvolved knees. There were no group-by-limb interaction effects, indicating no significant differences between the involved knee and uninvolved knee in the ACLR group. Medium to large effect sizes were identified for between-group differences in all regions.</p><p><strong>Conclusion: </strong>At 6 weeks after ACLR, patients exhibited bilateral reductions in brain activity during knee movements in multiple sensorimotor regions. These identified regions are associated with motor planning, motor execution, somatosensory function, and sensorimotor integration. These data indicate that ACLR affected sensorimotor brain activity in both limbs during the early postoperative phase of rehabilitation.</p>","PeriodicalId":55528,"journal":{"name":"American Journal of Sports Medicine","volume":" ","pages":"3635465251313808"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03635465251313808","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Brain activity during knee movements is altered throughout the sensorimotor network after anterior cruciate ligament reconstruction (ACLR). Patients at 2 to 5 years after surgery appear to require greater neural activity to perform basic knee movement patterns, but it is unclear if brain activity differences within sensorimotor regions are present early after surgery. It is also unknown whether uninvolved knee movements elicit similar or unique activity compared with involved knee movements.
Purpose: To examine brain activity in sensorimotor regions during involved and uninvolved knee movements in patients at 6 weeks after ACLR compared with control participants.
Study design: Cohort study; Level of evidence, 2.
Methods: A total of 15 patients who underwent ACLR (mean age, 21.9 ± 4.3 years [range, 17-29 years]; 8 female) and 15 control participants performed 30-second blocks of repeated knee flexion and extension, followed by 30 seconds of rest, during functional magnetic resonance imaging. Regions of interest included the right and left primary motor cortex (M1), right and left primary somatosensory cortex (S1), supplementary motor area (SMA), precuneus, and lingual gyrus. Activity from task-relevant voxels (move > rest) was extracted, and generalized estimating equations evaluated the main effect of group and group-by-limb interaction. Effect sizes were calculated using the Cohen d.
Results: Reduced brain activity during knee flexion and extension was observed in the ACLR group in the ipsilateral M1 and S1, contralateral S1, SMA, and precuneus during movements of the involved and uninvolved knees. There were no group-by-limb interaction effects, indicating no significant differences between the involved knee and uninvolved knee in the ACLR group. Medium to large effect sizes were identified for between-group differences in all regions.
Conclusion: At 6 weeks after ACLR, patients exhibited bilateral reductions in brain activity during knee movements in multiple sensorimotor regions. These identified regions are associated with motor planning, motor execution, somatosensory function, and sensorimotor integration. These data indicate that ACLR affected sensorimotor brain activity in both limbs during the early postoperative phase of rehabilitation.
期刊介绍:
An invaluable resource for the orthopaedic sports medicine community, _The American Journal of Sports Medicine_ is a peer-reviewed scientific journal, first published in 1972. It is the official publication of the [American Orthopaedic Society for Sports Medicine (AOSSM)](http://www.sportsmed.org/)! The journal acts as an important forum for independent orthopaedic sports medicine research and education, allowing clinical practitioners the ability to make decisions based on sound scientific information.
This journal is a must-read for:
* Orthopaedic Surgeons and Specialists
* Sports Medicine Physicians
* Physiatrists
* Athletic Trainers
* Team Physicians
* And Physical Therapists