Mineralised bone properties in a child with recessive osteogenesis imperfecta type XIV and in a conditional Tmem38b knockout murine model (Runx2-Cre; Tmem38bfl/fl).

Bone Pub Date : 2025-02-02 DOI:10.1016/j.bone.2025.117421
Chloe E Jones, Stéphane Blouin, Adalbert Raimann, Gabriel Mindler, Barbara M Contento, Roberta Besio, Andreas Kranzl, Benjamin Kraler, Markus A Hartmann, Antonella Forlino, Nadja Fratzl-Zelman
{"title":"Mineralised bone properties in a child with recessive osteogenesis imperfecta type XIV and in a conditional Tmem38b knockout murine model (Runx2-Cre; Tmem38b<sup>fl/fl</sup>).","authors":"Chloe E Jones, Stéphane Blouin, Adalbert Raimann, Gabriel Mindler, Barbara M Contento, Roberta Besio, Andreas Kranzl, Benjamin Kraler, Markus A Hartmann, Antonella Forlino, Nadja Fratzl-Zelman","doi":"10.1016/j.bone.2025.117421","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>OI type XIV is caused by variants in the TMEM38B gene, encoding for the ubiquitously expressed endoplasmic reticulum trimeric intracellular cation channel type B (TRIC-B), causing disruptions in calcium homeostasis and collagen synthesis. Patients with OI type XIV present with a highly variable clinical phenotype, ranging from asymptomatic to severe. We present here data from a 6 year clinical follow-up of two affected siblings and bone tissue characterisation obtained during corrective surgery from one of the patients, as well as tibiae from a novel Tmem38b conditional knockout murine model (Runx2-Cre; Tmem38b<sup>fl/fl</sup>).</p><p><strong>Methods: </strong>Clinical examinations of the patients include bone mineral density (BMD) measurements using dual-energy x-ray absorptiometry (DXA) scanning and gait analyses. Quantitative backscattered electron imaging (qBEI) was used to investigate bone mineralisation density distribution (BMDD) and osteocyte lacunae properties, and confocal laser scanning microscopy was used to quantify the osteocyte lacuno-canalicular network (OLCN) in both human and murine specimens.</p><p><strong>Results: </strong>Both patients (P1, P2) presented with muscular hypotension, fatigue, progression of lower limb deformities, and fractures. BMDD of the osteonal bone region of the tibia and fibula specimens obtained from P1 revealed no significant shift towards higher mineral content as seen in \"classical\" OI. Osteocyte lacunae porosity was elevated and analyses of the OLCN revealed a reduction in canalicular density and lacunar degree. Runx2-Cre; Tmem38b<sup>fl/fl</sup> mice exhibited a very severe skeletal phenotype, with 10/12 of the tibiae showing evidence of fractures, bone deformations, or calluses. In contrast to the patient samples, both the cortex and metaphysis of mutant mice demonstrated a significant increase in the average mineral content (CaMean) and the peak of the distribution (CaPeak), as well as in osteocyte lacunae porosity (P < 0.0001), whereas canalicular density (P < 0.0001), and lacunar degree (P = 0.0004) were decreased.</p><p><strong>Conclusion: </strong>While Runx2-Cre; Tmem38b<sup>fl/fl</sup> mice exhibit hypermineralisation of the bone matrix, this is not apparent in bone specimens obtained from the OI type XIV patient. However, both human and murine bone tissue with absence of TRIC-B demonstrate the same abnormalities of the osteocyte lacunae porosity and osteocyte lacuno-canalicular network, indicating disruption to the OLCN which is likely a general hallmark of OI bone.</p>","PeriodicalId":93913,"journal":{"name":"Bone","volume":" ","pages":"117421"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bone.2025.117421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: OI type XIV is caused by variants in the TMEM38B gene, encoding for the ubiquitously expressed endoplasmic reticulum trimeric intracellular cation channel type B (TRIC-B), causing disruptions in calcium homeostasis and collagen synthesis. Patients with OI type XIV present with a highly variable clinical phenotype, ranging from asymptomatic to severe. We present here data from a 6 year clinical follow-up of two affected siblings and bone tissue characterisation obtained during corrective surgery from one of the patients, as well as tibiae from a novel Tmem38b conditional knockout murine model (Runx2-Cre; Tmem38bfl/fl).

Methods: Clinical examinations of the patients include bone mineral density (BMD) measurements using dual-energy x-ray absorptiometry (DXA) scanning and gait analyses. Quantitative backscattered electron imaging (qBEI) was used to investigate bone mineralisation density distribution (BMDD) and osteocyte lacunae properties, and confocal laser scanning microscopy was used to quantify the osteocyte lacuno-canalicular network (OLCN) in both human and murine specimens.

Results: Both patients (P1, P2) presented with muscular hypotension, fatigue, progression of lower limb deformities, and fractures. BMDD of the osteonal bone region of the tibia and fibula specimens obtained from P1 revealed no significant shift towards higher mineral content as seen in "classical" OI. Osteocyte lacunae porosity was elevated and analyses of the OLCN revealed a reduction in canalicular density and lacunar degree. Runx2-Cre; Tmem38bfl/fl mice exhibited a very severe skeletal phenotype, with 10/12 of the tibiae showing evidence of fractures, bone deformations, or calluses. In contrast to the patient samples, both the cortex and metaphysis of mutant mice demonstrated a significant increase in the average mineral content (CaMean) and the peak of the distribution (CaPeak), as well as in osteocyte lacunae porosity (P < 0.0001), whereas canalicular density (P < 0.0001), and lacunar degree (P = 0.0004) were decreased.

Conclusion: While Runx2-Cre; Tmem38bfl/fl mice exhibit hypermineralisation of the bone matrix, this is not apparent in bone specimens obtained from the OI type XIV patient. However, both human and murine bone tissue with absence of TRIC-B demonstrate the same abnormalities of the osteocyte lacunae porosity and osteocyte lacuno-canalicular network, indicating disruption to the OLCN which is likely a general hallmark of OI bone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local antibiotic delivery: Recent basic and translational science insights in orthopedics. Mineralised bone properties in a child with recessive osteogenesis imperfecta type XIV and in a conditional Tmem38b knockout murine model (Runx2-Cre; Tmem38bfl/fl). Combined Romosozumab and Raloxifene treatment targets impaired bone quality in a male murine model of diabetic kidney disease. Comment on 'Automatic AI tool for opportunistic screening of vertebral compression fractures on chest frontal radiographs: A multicenter study'. Letter to the editor concerning 'The association of waist circumference with bone mineral density and risk of osteoporosis in US adult: National health and nutrition examination survey'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1