Exploring climate-driven phenological mismatches in pears, pests and natural enemies: a multi-model approach

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2025-02-05 DOI:10.1007/s10340-025-01874-6
Laura A. Reeves, Tim Belien, Deepa Senapathi, Michael P. D. Garratt, Michelle T. Fountain
{"title":"Exploring climate-driven phenological mismatches in pears, pests and natural enemies: a multi-model approach","authors":"Laura A. Reeves, Tim Belien, Deepa Senapathi, Michael P. D. Garratt, Michelle T. Fountain","doi":"10.1007/s10340-025-01874-6","DOIUrl":null,"url":null,"abstract":"<p>Pear psyllid (<i>Cacopsylla pyri</i>) is the dominant pest of UK pear orchards, with an estimated cost of £5 million per annum. Insecticide withdrawal and increased pesticide resistance of <i>C. pyri</i> have led many growers to depend more on natural enemies for pest management, including earwigs. However, there is concern how phenological events may shift with future climate change, which may result in phenological mismatches. This study aimed to determine shifts in timing of phenological events within an agroecosystem and predict phenological mismatches or synchronies between trophic levels. We evaluated three models: the <i>C. pyri</i> phenology model, the earwig degree day model and the PhenoFlex model (flowering time). Phenological events predicted by models included: first, full and last flowering time for <i>Pyrus communis</i>; peak psyllid abundance date for first-generation (G1) <i>C. pyri</i> nymphs and second-generation (G2) eggs, nymphs and adults; and peak abundance date for stage 4 <i>Forficula auricularia</i> and adults. Findings indicated that the timing of phenological events was advancing for all trophic levels, becoming significantly earlier under the current time period. Furthermore, predictions indicated that timing events would continue to advance under the RCP8.5 scenario. However, not all phenological events advanced at the same rate; the date of peak <i>C. pyri</i> G1 nymph abundance advanced at a higher rate than full flowering time, which could result in a phenological mismatch by 2071. Conversely, <i>C. pyri</i> and <i>F. auricularia</i> showed phenological synchrony, with peak abundance dates advancing at a similar rate, which could be beneficial for future biological control.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"40 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01874-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pear psyllid (Cacopsylla pyri) is the dominant pest of UK pear orchards, with an estimated cost of £5 million per annum. Insecticide withdrawal and increased pesticide resistance of C. pyri have led many growers to depend more on natural enemies for pest management, including earwigs. However, there is concern how phenological events may shift with future climate change, which may result in phenological mismatches. This study aimed to determine shifts in timing of phenological events within an agroecosystem and predict phenological mismatches or synchronies between trophic levels. We evaluated three models: the C. pyri phenology model, the earwig degree day model and the PhenoFlex model (flowering time). Phenological events predicted by models included: first, full and last flowering time for Pyrus communis; peak psyllid abundance date for first-generation (G1) C. pyri nymphs and second-generation (G2) eggs, nymphs and adults; and peak abundance date for stage 4 Forficula auricularia and adults. Findings indicated that the timing of phenological events was advancing for all trophic levels, becoming significantly earlier under the current time period. Furthermore, predictions indicated that timing events would continue to advance under the RCP8.5 scenario. However, not all phenological events advanced at the same rate; the date of peak C. pyri G1 nymph abundance advanced at a higher rate than full flowering time, which could result in a phenological mismatch by 2071. Conversely, C. pyri and F. auricularia showed phenological synchrony, with peak abundance dates advancing at a similar rate, which could be beneficial for future biological control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Palatability of insecticides and protein in sugar solutions to Argentine ants Exploring climate-driven phenological mismatches in pears, pests and natural enemies: a multi-model approach Yeast volatiles show promise as a semiochemical lure for Carpophilus truncatus, an emerging pest of almond orchards around the world Integrated application of biological and biorational strategies for effective control of the “false root-knot nematode” in tomato plants Assessing the phytosanitary threats of two non-native crickets under temperature change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1