Lorenzo Milan, Monica Barbero, Mauro Borri‐Brunetto
{"title":"A New Method to Assess the Possibility of Brittle Failure of Rock Induced by Deep Excavations","authors":"Lorenzo Milan, Monica Barbero, Mauro Borri‐Brunetto","doi":"10.1002/nag.3953","DOIUrl":null,"url":null,"abstract":"Spalling and rockburst are severe criticalities that can emerge while excavating deep tunnels in rock masses under heavy natural stress states. Here, rock brittle failure can induce massive releases of the energy stored during the excavation and dangerous projections of rock blocks into the opening. The prediction of rock brittle failure is therefore crucial and, for this purpose, different empirical brittleness indexes have been proposed in the past. However, many of them provide predictions that is often not consistent and/or truthful, as they do not consider the stress and energy variations induced in the rock mass by the excavation. This paper presents an innovative method to distinguish between ductile and brittle failure of rock around deep tunnels. The method is based on two mechanical models of rock damage that were formulated to describe brittle and ductile failure mechanisms within the rock mass, as induced by the stress release during the excavation. These models are integrated into the definition of a new brittleness index, named tunnel brittleness index (TBI). TBI quantifies the outcome of the competition between the two failure mechanisms, estimating the susceptibility of the rock mass to brittle failure. The effectiveness and the application of TBI are shown with reference to a real case study. Specifically, TBI appears as a promising and useful tool for engineers dealing with deep tunnel projects that may be employed for predicting brittle collapses in the early stages of the design, which would be crucial in the preliminary choice of excavation techniques and machinery, and the support systems.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"12 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3953","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spalling and rockburst are severe criticalities that can emerge while excavating deep tunnels in rock masses under heavy natural stress states. Here, rock brittle failure can induce massive releases of the energy stored during the excavation and dangerous projections of rock blocks into the opening. The prediction of rock brittle failure is therefore crucial and, for this purpose, different empirical brittleness indexes have been proposed in the past. However, many of them provide predictions that is often not consistent and/or truthful, as they do not consider the stress and energy variations induced in the rock mass by the excavation. This paper presents an innovative method to distinguish between ductile and brittle failure of rock around deep tunnels. The method is based on two mechanical models of rock damage that were formulated to describe brittle and ductile failure mechanisms within the rock mass, as induced by the stress release during the excavation. These models are integrated into the definition of a new brittleness index, named tunnel brittleness index (TBI). TBI quantifies the outcome of the competition between the two failure mechanisms, estimating the susceptibility of the rock mass to brittle failure. The effectiveness and the application of TBI are shown with reference to a real case study. Specifically, TBI appears as a promising and useful tool for engineers dealing with deep tunnel projects that may be employed for predicting brittle collapses in the early stages of the design, which would be crucial in the preliminary choice of excavation techniques and machinery, and the support systems.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.